我们已经有多个线程标记为p值,这些线程揭示了许多关于它们的误解。十个月前,我们有一个线程关于心理杂志,“禁止” -值 p,现在美国统计协会(2016)指出,与我们的分析,我们“不应该用的计算结束 -值”。
美国统计协会(ASA)认为,科学界可以从一份正式声明中受益,该声明阐明了一些正确使用和解释值的公认原则。
该委员会列出了其他方法作为可能替代或补充:
鉴于普遍存在对误用和误解 ,一些统计学家倾向于用其他方法来补充甚至替代 。这些方法包括强调评估而不是测试的方法,例如置信度,可信度或预测间隔;贝叶斯方法;替代的证据度量,例如似然比或贝叶斯因子;以及其他方法,例如决策理论建模和错误发现率。所有这些措施和方法都依赖于进一步的假设,但它们可能更直接地解决效应的大小(及其相关的不确定性)或假设是否正确。 p
因此,让我们想象一下后的现实。ASA列出了一些可以代替,但是为什么它们更好?对于一生使用的研究人员,其中哪一个可以代替他?我想,这样的问题会出现在后 -值的现实,所以也许我们尽量在他们面前的一个步骤。可以直接使用的合理替代方法是什么?为什么这种方法应该说服您的首席研究员,编辑或读者?p p p
正如此后续博客条目所建议的那样,在其简单性方面无与伦比:
p值只需要一个统计模型,即可统计要保留的原假设下的统计行为。即使使用替代假设的模型来选择“良好”统计量(将用于构造p值),该替代模型也不必正确才能使p值有效,并且有用(即:控制I型错误在期望的水平上,同时提供检测实际效果的能力)。相比之下,其他(出色且有用的)统计方法(如似然比,效果大小估计,置信区间或贝叶斯方法)都需要假定的模型来保持更广泛的情况,而不仅是在经过测试的零值下。
是它们,还是不正确,我们可以轻松地替换它们?
我知道,这是广义的,但主要问题很简单:什么是可以替代的值的最佳(以及为什么)现实生活中的替代方法?
ASA(2016)。ASA关于统计意义和声明。 美国统计学家。(在新闻)