Answers:
我考虑以下线性模型:Ý = X β + ε
残差的向量由下式估算
ε =ÿ-X β =(我-X(X'X)-1X')ý=QÝ=Q(Xβ+ε)=Qε
其中Q = 我- X (X ' X )- 1 X '。
观察到tr(Q )= n - p(在循环置换下轨迹是不变的),并且Q ' = Q = Q 2。因此,Q的特征值是0和1(下面有一些详细信息)。因此,存在一个unit矩阵V使得(当且仅当它们是正态时,矩阵才可以由unit矩阵对角化。)
V ' Q V = Δ = DIAG(1 ,... ,1个⏟ ñ - p 倍,0 ,... ,0 ⏟ p 倍)
现在,让我们ķ = V ' ε。
由于ε〜Ñ (0 ,σ 2 Q ),我们有ķ 〜Ñ (0 ,σ 2 Δ ),并且因此ķ ñ - p + 1 = ... = ķ Ñ = 0。从而
‖ ķ ‖ 2σ 2 =‖ķ⋆‖2σ 2〜χ 2 Ñ - p
与ķ ⋆ = (ķ 1,... ,ķ Ñ - p)'。
此外,由于V是a矩阵,所以我们也有
‖ ε ‖ 2 = ‖ ķ ‖ 2 = ‖ ķ ⋆ ‖ 2
从而
的RSSσ 2〜χ 2 Ñ - p
最后,观察到该结果意味着
E (RSSñ - p)=σ2
Since Q2−Q=0
IMHO, the matricial notation Y=Xβ+ϵ
Now the language of elementary geometry comes into play. The least-squares estimator ˆμ
Finally, P⊥WY=P⊥W(μ+σG)=0+σP⊥WG,
This demonstration uses only one theorem, actually a definition-theorem:
Definition and theorem. A random vector in Rn has the standard normal distribution on a vector space U⊂Rn if it takes its values in U and its coordinates in one (⟺ in all) orthonormal basis of U are independent one-dimensional standard normal distributions
(from this definition-theorem, Cochran's theorem is so obvious that it is not worth to state it)