是否有大规模的MCMC方法研究在一组测试密度上比较了几种不同算法的性能?我想到的是与Rios和Sahinidis的论文(2013)相同的东西,该论文将大量无衍生的黑盒优化器在几种测试函数上进行了全面比较。
对于MCMC,可以通过例如每个密度评估的有效样本数(ESS)或其他一些适当的指标来评估性能。
一些评论:
我理解性能将在很大程度上取决于目标pdf的细节,但是对于优化而言,类似的参数(可能不相同)成立,尽管如此,仍有大量基准测试功能,套件,竞赛,论文等用于基准测试优化。算法。
同样,MCMC与优化的不同之处还在于,需要更多的用户关注和调整。但是,现在有几种MCMC方法几乎不需要调整:在老化阶段,采样过程中适应的方法,或演化多个交互链并使用的多状态(也称为ensemble)方法(例如Emcee)。来自其他链条的信息以指导抽样。
我对标准方法与多状态(又称为合奏)方法之间的比较特别感兴趣。有关多状态的定义,请参阅MacKay的书的 30.6节:
在多状态方法中,多个参数向量被保留;它们在大都会和吉布斯等举动下各自发展;向量之间也存在相互作用。
- 这个问题起源于这里。