我有计数数据(根据可能的许多因素,对客户数量进行需求/报价分析)。我尝试使用正常错误进行线性回归,但是我的QQ图并不是很好。我尝试了答案的日志转换:再次是不良的QQ图。
所以现在,我正在尝试使用Poisson错误进行回归。使用具有所有重要变量的模型,我得到:
Null deviance: 12593.2 on 53 degrees of freedom
Residual deviance: 1161.3 on 37 degrees of freedom
AIC: 1573.7
Number of Fisher Scoring iterations: 5
残余偏差大于残余自由度:我过于分散。
我怎么知道我是否需要使用准泊松?在这种情况下,拟泊松的目标是什么?我在克劳利(Crawley)的《 The R Book》中阅读了此建议,但我的观点并没有太大的改善。