泊松参数的无偏估计


9

每天的事故数量是带有参数的泊松随机变量,在随机选择的10天中,观察到的事故数量为1,0,1,1,2,0,2,0,0,1,将是的无偏估计è λλeλ

我想用这种方式来尝试:我们知道,,但Ë ē ˉ Xê λ。那么,所需的无偏估计量是多少?E(x¯)=λ=0.8E(ex¯) eλ

Answers:


9

如果,则P X = ķ = λ ķ ë - λ / ķ 用于ķ 0。很难计算XPois(λ)P(X=k)=λkeλ/k!k0

但更容易计算 È [ X Ñ _ ],其中 X Ñ _ = X X - 1 X - ñ + 1 è [ X ñ _ ] = λ ñ

E[Xn]=k0knP(X=k),
E[Xn_]Xn_=X(X1)(Xn+1)
E[Xn_]=λn.
您可以自己证明这一点-这很容易。此外,我让你证明自己执行以下操作:如果被IID为的POI λ ,然后Ù = Σ X 的POI Ñ λ ,因此 È [ Ù Ñ _ ] = ñ λ ñ = ñ ñ λ ñX1,,XNPois(λ)U=iXiPois(Nλ) Z nU n _ / N n。它遵循
E[Un_]=(Nλ)n=NnλnandE[Un_/Nn]=λn.
Zn=Un_/Nn
  • 是您的测量结果的函数 X 1 X NZnX1XN
  • E[Zn]=λn

由于,我们可以推断出eλ=n0λn/n!

E[n0Znn!]=n0λnn!=eλ,
W=n0Zn/n!E[W]=eλWUN0Un_=0n>UZn=0n>U

λf(λ)=n0anλn


3

Y=i=110XiPois(10λ)θ=eλ

θ^=eX¯=eY/10.
Y
MY(t)=e10λ(et1),
E(θ^)=E(e110Y)=MY(110)=e10λ(e1/101)=θ10(e1/101),
θ^
θ=eaY,
aY
E(θ)=e10λ(ea1)=θ10(ea1),
10(ea1)=1a=ln1110θ=(1110)Yθ=eλ

YλθYeλ

By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.