如何将频繁出现的结果转换为贝叶斯先验结果?
考虑以下非常普通的场景:过去进行了一次实验,并测量了某些参数结果。该分析是采用常客方法进行的。结果中给出了置信区间。φ
我现在正在进行一些新的实验,我想测量一些其他参数,例如和。我的实验与以前的研究不同---它不是使用相同的方法进行的。我想进行贝叶斯分析,因此需要将先验放在和。φ θ φ
以前没有进行过测量,因此我在其上放了一个无信息的信息(例如其统一的信息)。
如前所述,有一个先前的结果,以置信区间给出。要在我的当前分析中使用该结果,我需要将以前的常客性结果转换为内容丰富的先验信息以进行分析。
在这种组合方案中不可用的一个选项是重复先前的分析,以贝叶斯方式进行测量。 如果我可以做到这一点,那么将具有先前实验的后验,然后将其用作我的先验,那么就没有问题了。
我应该如何将常客身份CI转换为贝叶斯先验分布以进行分析?或者换句话说,我怎么可能对他们的翻译结果frequentest在成后,我会再在我的分析之前使用?φ
欢迎讨论此类型问题的任何见解或参考。