我正在使用Tensorflow制作的只有一个隐藏层的简单神经网络,然后尝试对隐藏层进行不同的激活:
- 露露
- 乙状结肠
- Softmax(嗯,通常在最后一层使用softmax。)
Relu提供最佳的列车精度和验证精度。我不确定如何解释这一点。
我们知道Relu具有良好的品质,例如稀疏性(例如无梯度消失)等,但是
问:Relu神经元通常比乙状结肠/ softmax神经元好吗?我们是否应该几乎总是在NN(甚至CNN)中使用Relu神经元? 我认为,如果我们担心过度拟合,则更复杂的神经元会带来更好的结果,至少可以提高训练的准确性。
谢谢PS:该代码基本上来自“ Udacity-Machine learning -assignment2”,它是使用简单的1层-NN识别notMNIST的。
batch_size = 128
graph = tf.Graph()
with graph.as_default():
# Input data.
tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# hidden layer
hidden_nodes = 1024
hidden_weights = tf.Variable( tf.truncated_normal([image_size * image_size, hidden_nodes]) )
hidden_biases = tf.Variable( tf.zeros([hidden_nodes]))
hidden_layer = **tf.nn.relu**( tf.matmul( tf_train_dataset, hidden_weights) + hidden_biases)
# Variables.
weights = tf.Variable( tf.truncated_normal([hidden_nodes, num_labels]))
biases = tf.Variable(tf.zeros([num_labels]))
# Training computation.
logits = tf.matmul(hidden_layer, weights) + biases
loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels) )
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_relu = **tf.nn.relu**( tf.matmul(tf_valid_dataset, hidden_weights) + hidden_biases)
valid_prediction = tf.nn.softmax( tf.matmul(valid_relu, weights) + biases)
test_relu = **tf.nn.relu**( tf.matmul( tf_test_dataset, hidden_weights) + hidden_biases)
test_prediction = tf.nn.softmax(tf.matmul(test_relu, weights) + biases)