我有一个约70个要减少的变量的数据集。我想要做的是使用CV以下列方式查找最有用的变量。
1)随机选择说20个变量。
2)使用stepwise
/ LASSO
/ lars
/ etc选择最重要的变量。
3)重复〜50x,查看最常选择(未消除)的变量。
这与a的randomForest
做法类似,但是该rfVarSel
软件包似乎仅适用于因子/分类,我需要预测一个连续的因变量。
我正在使用R,因此任何建议都可以在此处理想地实现。
我有一个约70个要减少的变量的数据集。我想要做的是使用CV以下列方式查找最有用的变量。
1)随机选择说20个变量。
2)使用stepwise
/ LASSO
/ lars
/ etc选择最重要的变量。
3)重复〜50x,查看最常选择(未消除)的变量。
这与a的randomForest
做法类似,但是该rfVarSel
软件包似乎仅适用于因子/分类,我需要预测一个连续的因变量。
我正在使用R,因此任何建议都可以在此处理想地实现。
Answers:
我相信您所描述的已经在caret
软件包中实现了。在rfe
此处查看功能或插图:http : //cran.r-project.org/web/packages/caret/vignettes/caretSelection.pdf
话虽如此,为什么您需要减少功能数量?从70降到20并不是一个数量级的下降。我认为您需要70多个功能,然后才可以确信某些功能确实没有关系。但是再说一次,我想这就是主观先验的地方。
我已经修改了今天早些时候的答案。现在,我生成了一些示例数据,可在这些数据上运行代码。其他人正确地建议您研究使用插入符号包,我同意。但是,在某些情况下,您可能会发现有必要编写自己的代码。下面,我试图说明如何在R中使用sample()函数将观察结果随机分配给交叉验证折叠。我还使用for循环对10个训练集执行变量预选择(使用单变量线性回归,其最大p值截止值为0.1)和模型构建(使用逐步回归)。然后,您可以编写自己的代码,以将结果模型应用于验证折叠。希望这可以帮助!
################################################################################
## Load the MASS library, which contains the "stepAIC" function for performing
## stepwise regression, to be used later in this script
library(MASS)
################################################################################
################################################################################
## Generate example data, with 100 observations (rows), 70 variables (columns 1
## to 70), and a continuous dependent variable (column 71)
Data <- NULL
Data <- as.data.frame(Data)
for (i in 1:71) {
for (j in 1:100) {
Data[j,i] <- rnorm(1) }}
names(Data)[71] <- "Dependent"
################################################################################
################################################################################
## Create ten folds for cross-validation. Each observation in your data will
## randomly be assigned to one of ten folds.
Data$Fold <- sample(c(rep(1:10,10)))
## Each fold will have the same number of observations assigned to it. You can
## double check this by typing the following:
table(Data$Fold)
## Note: If you were to have 105 observations instead of 100, you could instead
## write: Data$Fold <- sample(c(rep(1:10,10),rep(1:5,1)))
################################################################################
################################################################################
## I like to use a "for loop" for cross-validation. Here, prior to beginning my
## "for loop", I will define the variables I plan to use in it. You have to do
## this first or R will give you an error code.
fit <- NULL
stepw <- NULL
training <- NULL
testing <- NULL
Preselection <- NULL
Selected <- NULL
variables <- NULL
################################################################################
################################################################################
## Now we can begin the ten-fold cross validation. First, we open the "for loop"
for (CV in 1:10) {
## Now we define your training and testing folds. I like to store these data in
## a list, so at the end of the script, if I want to, I can go back and look at
## the observations in each individual fold
training[[CV]] <- Data[which(Data$Fold != CV),]
testing[[CV]] <- Data[which(Data$Fold == CV),]
## We can preselect variables by analyzing each variable separately using
## univariate linear regression and then ranking them by p value. First we will
## define the container object to which we plan to output these data.
Preselection[[CV]] <- as.data.frame(Preselection[CV])
## Now we will run a separate linear regression for each of our 70 variables.
## We will store the variable name and the coefficient p value in our object
## called "Preselection".
for (i in 1:70) {
Preselection[[CV]][i,1] <- i
Preselection[[CV]][i,2] <- summary(lm(Dependent ~ training[[CV]][,i] , data = training[[CV]]))$coefficients[2,4]
}
## Now we will remove "i" and also we will name the columns of our new object.
rm(i)
names(Preselection[[CV]]) <- c("Variable", "pValue")
## Now we will make note of those variables whose p values were less than 0.1.
Selected[[CV]] <- Preselection[[CV]][which(Preselection[[CV]]$pValue <= 0.1),] ; row.names(Selected[[CV]]) <- NULL
## Fit a model using the pre-selected variables to the training fold
## First we must save the variable names as a character string
temp <- NULL
for (k in 1:(as.numeric(length(Selected[[CV]]$Variable)))) {
temp[k] <- paste("training[[CV]]$V",Selected[[CV]]$Variable[k]," + ",sep="")}
variables[[CV]] <- paste(temp, collapse = "")
variables[[CV]] <- substr(variables[[CV]],1,(nchar(variables[[CV]])-3))
## Now we can use this string as the independent variables list in our model
y <- training[[CV]][,"Dependent"]
form <- as.formula(paste("y ~", variables[[CV]]))
## We can build a model using all of the pre-selected variables
fit[[CV]] <- lm(form, training[[CV]])
## Then we can build new models using stepwise removal of these variables using
## the MASS package
stepw[[CV]] <- stepAIC(fit[[CV]], direction="both")
## End for loop
}
## Now you have your ten training and validation sets saved as training[[CV]]
## and testing[[CV]]. You also have results from your univariate pre-selection
## analyses saved as Preselection[[CV]]. Those variables that had p values less
## than 0.1 are saved in Selected[[CV]]. Models built using these variables are
## saved in fit[[CV]]. Reduced versions of these models (by stepwise selection)
## are saved in stepw[[CV]].
## Now you might consider using the predict.lm function from the stats package
## to apply your ten models to their corresponding validation folds. You then
## could look at the performance of the ten models and average their performance
## statistics together to get an overall idea of how well your data predict the
## outcome.
################################################################################
在执行交叉验证之前,重要的是您了解其正确用法。这两个参考文献提供了关于交叉验证的出色讨论:
这些论文是针对生物统计学家的,但是对任何人都有用。
另外,请始终记住使用逐步回归是危险的(尽管使用交叉验证应有助于减轻过度拟合)。有关逐步回归的详细讨论,请参见:http : //www.stata.com/support/faqs/stat/stepwise.html。
如果您还有其他问题,请告诉我!
我在这里发现了一些不错的东西:http : //cran.r-project.org/web/packages/Causata/vignettes/Causata-vignette.pdf
尝试使用glmnet软件包时尝试此操作
# extract nonzero coefficients
coefs.all <- as.matrix(coef(cv.glmnet.obj, s="lambda.min"))
idx <- as.vector(abs(coefs.all) > 0)
coefs.nonzero <- as.matrix(coefs.all[idx])
rownames(coefs.nonzero) <- rownames(coefs.all)[idx]