样本相关系数是总体相关系数的无偏估计量吗?


14

这是真的,是一个无偏估计ρ X ÿ?也就是说,ë [ - [R X ÿ ] = ρ X ÿRX,YρX,Y

E[RX,Y]=ρX,Y?

如果没有,什么是一个无偏估计?(也许有一个标准的无偏估计器被使用?而且,它类似于无偏样本方差,我们可以简单地进行调整,将有偏样本方差乘以nρX,Y?)nn1

人口相关系数被定义为同时将样品相关系数被定义为- [RXÿ=Σ Ñ = 1X- ˉ XÝ- ˉ ÿ

ρX,Y=E[(XμX)(YμY)]E[(XμX)2]E[(YμY)2],
RX,Y=i=1n(XiX¯)(YiY¯)i=1n(XiX¯)2i=1n(YiY¯)2.

关于ρ的估计量的一个(有点类似)问题ρ
ttnphns

“什么是无偏估计量”问题以存在一个且只有一个为前提。 先验的,似乎没有任何理由认为。
Michael Hardy

@MichaelHardy:我已经纠正了。感谢您指出。
肯尼·路易斯

刚刚偶然发现了这个线程,我认为这可能是一个有趣的阅读sciencedirect.com/science/article/pii/S0167715298000352(我自己尚未读过,
TBH

Answers:


10

这不是一个简单的问题,但是有些表达式可用。如果您特别在谈论正态分布,那么答案是否定的!我们有

Ëρ^=ρ[1个-1个-ρ22ñ+Ø1个ñ2]

ñ-2

ρ=0|ρ|=1个1个ñ

Ëρ^ρ。注意,这已经通过有界收敛定理从样本相关系数的有界性和一致性中得出。


2
There may be infinitely many terms in the expression above, but "infinite terms" would be there are some terms, each of which is infinite.
Michael Hardy

Suppose all points in a bivariate population lie on a straight line with nonzero slope. Then all points in any sample do so too. I conjecture therefore that if population correlation has absolute value |ρ|=1 so also sample correlation |r|1.
Nick Cox

@NickCox That's true, in the degenerate case the sample correlation coefficient would return |1| with no estimation error.
JohnK

For a related question, does anyone know if analogous results exist for any other distributions besides the 2D normal?
Riemann1337
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.