假设我拟合了二项式回归并获得了点估计和回归系数的方差-协方差矩阵。这样一来,我就可以为将来的实验的预期成功比例获得CI ,但是我需要为观察到的比例获得CI。已经发布了一些相关的答案,包括模拟(假设我不想这样做)和指向Krishnamoorthya等人的链接(并不能完全回答我的问题)。
我的推理如下:如果仅使用二项式模型,则不得不假定是从正态分布中采样的(具有相应的Wald CI),因此不可能以封闭形式获得观察比例的CI。如果我们假设p是从beta分布中采样的,那么事情就容易多了,因为成功次数将遵循Beta-Binomial分布。我们将不得不假设估计的beta参数α和β没有不确定性。
有三个问题:
1)理论上:仅使用beta参数的点估计值可以吗?我知道在多元线性回归中构造CI以便将来观察
他们这样做的WRT误差项方差,。我把它(如果我错了纠正我)的理由是,在实践中σ 2估计比回归系数远远更高的精度,我们不会得到太多的试图将不确定性σ 2。类似的理由适用于估计的beta参数α和β吗?
2)哪种软件包更好(R:gamlss-bb,betareg,odd ?;我也可以使用SAS)。
3)给定估计的beta参数,是否有(近似)捷径来获得未来成功计数的分位数(2.5%,97.5%),或者更好的是,根据Beta-Binomial分布获得未来成功的比例。