对于给定的推理问题,我们知道贝叶斯方法通常在形式和结果上都不同于后继方法。经常有人(通常包括我在内)经常指出,他们的方法不需要先验,因此更多是“数据驱动”而不是“判断驱动”。当然,贝叶斯定律可以指向非信息性先验,或者说是实用的,只使用一个真正的分散先验。
我的担忧,尤其是在对惯常的客观性感到自鸣得意之后,尤其是我声称的“客观”方法可以在贝叶斯框架中提出,尽管有一些不同寻常的先验和数据模型。在那种情况下,我只是幸福地对荒谬的先验知识一无所知,并且仿照我的常客主义方法所暗示的那样吗?
如果贝氏指出,这样的提法,我想,我的第一反应是说“嗯,这是很好的,你可以这样做,但我怎么这不是想这个问题!”。但是,谁在乎我如何看待它或如何制定它。如果我的程序在统计学上/数学上等效于某些贝叶斯模型,那么我隐式地(不经意间!)执行贝叶斯推断。
下面的实际问题
这种认识大大破坏了任何自鸣得意的诱惑。但是,我不确定贝叶斯范式是否可以容纳所有惯常做法(同样,只要贝叶斯选择合适的先验和可能性)是否成立。我知道相反的说法是错误的。
我之所以这样问,是因为我最近发布了一个关于条件推断的问题,这使我想到了以下论文:在此处(请参阅3.9.5,3.9.6)
他们指出了Basu的著名结果,即可能有不止一个辅助统计信息,这引发了关于哪个“相关子集” 最相关的问题。更糟糕的是,它们显示了两个示例,这些示例说明即使您具有唯一的辅助统计信息,也无法消除其他相关子集的存在。
他们继续得出结论,只有贝叶斯方法(或与之等效的方法)才能避免此问题,从而实现无条件的条件推断。
贝叶斯统计惯常主义统计可能并非如此-这是我在这里向这个小组提出的问题。但是看来,这两种范式之间的根本选择在于哲学上而不是目标上:您需要较高的条件精度还是较低的无条件误差:
当我们必须分析一个奇异的实例时,高条件精度似乎是适用的-尽管这种方法可能不适用于下一个数据集(超条件/专业化),但我们希望适合这种特殊的推断。
如果在某些情况下我们愿意做出有条件的错误推断,则低无条件错误是合适的,只要我们将长期运行的错误最小化或加以控制即可。老实说,写完这篇文章后,我不确定为什么要这么做,除非我被束缚了时间并且无法进行贝叶斯分析……嗯。
我倾向于基于似然的惯性论推论,因为我从似然函数中得到了一些(渐近/近似)条件性,但不需要摆弄先验条件-但是,我对贝叶斯推论越来越适应,尤其是当我看到了用于小样本推断的先前的aa 正则化术语。
抱歉,放在一边。我的主要问题的任何帮助表示赞赏。