Answers:
有一种适用于Harvey Goldstein的迭代广义最小二乘(IGLS)算法,还有一个较小的修改,即受限迭代广义最小二乘(RIGLS),它给出了方差参数的无偏估计。
这些算法仍然是迭代的,因此不是封闭形式,但是它们在计算上比MCMC或最大似然度简单。您只需迭代直到参数收敛。
Goldstein H.使用迭代广义最小二乘的多级混合线性模型分析。Biometrika 1986;73(1):43-56。doi:10.1093 / biomet / 73.1.43
Goldstein H.受限制的无偏迭代广义最小二乘估计。Biometrika 1989;76(3):622-623。doi:10.1093 / biomet / 76.3.622
有关此方法和替代方法的更多信息,请参见例如:
R中的lme4程序包使用迭代加权最小二乘(IRLS)和惩罚迭代加权最小二乘(PIRLS)。在此处查看PDF:
lmer()
函数,lme4
通常必须通读一堆C ++代码,以了解PIRLS的实现lmer()
(这对我们中那些不太精通C ++编程的人可能是一个挑战)。
如果您认为HLM是一种线性混合模型,则可以考虑EM算法。以下课程笔记的第22-23页指出了如何为混合模型实现经典的EM算法:
http://www.stat.ucla.edu/~yuille/courses/stat153/emtutorial.pdf
###########################################################
# Classical EM algorithm for Linear Mixed Model #
###########################################################
em.mixed <- function(y, x, z, beta, var0, var1,maxiter=2000,tolerance = 1e-0010)
{
time <-proc.time()
n <- nrow(y)
q1 <- nrow(z)
conv <- 1
L0 <- loglike(y, x, z, beta, var0, var1)
i<-0
cat(" Iter. sigma0 sigma1 Likelihood",fill=T)
repeat {
if(i>maxiter) {conv<-0
break}
V <- c(var1) * z %*% t(z) + c(var0) * diag(n)
Vinv <- solve(V)
xb <- x %*% beta
resid <- (y-xb)
temp1 <- Vinv %*% resid
s0 <- c(var0)^2 * t(temp1)%*%temp1 + c(var0) * n - c(var0)^2 * tr(Vinv)
s1 <- c(var1)^2 * t(temp1)%*%z%*%t(z)%*%temp1+ c(var1)*q1 -
c(var1)^2 *tr(t(z)%*%Vinv%*%z)
w <- xb + c(var0) * temp1
var0 <- s0/n
var1 <- s1/q1
beta <- ginverse( t(x) %*% x) %*% t(x)%*% w
L1 <- loglike(y, x, z, beta, var0, var1)
if(L1 < L0) { print("log-likelihood must increase, llikel <llikeO, break.")
conv <- 0
break
}
i <- i + 1
cat(" ", i," ",var0," ",var1," ",L1,fill=T)
if(abs(L1 - L0) < tolerance) {break} #check for convergence
L0 <- L1
}
list(beta=beta, var0=var0,var1=var1,Loglikelihood=L0)
}
#########################################################
# loglike calculates the LogLikelihood for Mixed Model #
#########################################################
loglike<- function(y, x, z, beta, var0, var1)
}
{
n<- nrow(y)
V <- c(var1) * z %*% t(z) + c(var0) * diag(n)
Vinv <- ginverse(V)
xb <- x %*% beta
resid <- (y-xb)
temp1 <- Vinv %*% resid
(-.5)*( log(det(V)) + t(resid) %*% temp1 )
}