我在纸上阅读了此标题,但从未在其他地方看到过这种方式描述的AUC。这是真的?有没有证明或简单的方法可以看到这一点?
图2显示了根据接收器工作特性曲线(AUC)下的面积表示的二分变量的预测精度,这相当于正确地将每个类别中的两个随机选择的用户正确分类的概率(例如,男性和女性) )。
在我看来,这不是真的,因为对于AUC = 0.5,以上内容表明一个人有50%的概率连续两次正确预测一次硬币翻转,但实际上,您只有25%的机会正确预测连续两次硬币翻转的过程。至少,我就是这么想的。
我在纸上阅读了此标题,但从未在其他地方看到过这种方式描述的AUC。这是真的?有没有证明或简单的方法可以看到这一点?
图2显示了根据接收器工作特性曲线(AUC)下的面积表示的二分变量的预测精度,这相当于正确地将每个类别中的两个随机选择的用户正确分类的概率(例如,男性和女性) )。
在我看来,这不是真的,因为对于AUC = 0.5,以上内容表明一个人有50%的概率连续两次正确预测一次硬币翻转,但实际上,您只有25%的机会正确预测连续两次硬币翻转的过程。至少,我就是这么想的。
Answers:
报价略有不正确。正确的说法是,ROC AUC是随机选择的阳性示例比随机选择的阴性示例获得更高排名的概率。这是由于ROC AUC和等级的Wilcoxon检验之间的关系。
您将在Tom Fawcett的“ ROC分析简介 ”插图中找到讨论内容。
正如其他人指出的那样,AUC表示从阳性分类中随机选择的示例从分类器中获得比从阴性分类中随机选择的示例获得更高分数的概率。
有关此属性的证明,请参见: 如何导出AUC的数学公式?
或用于该答案的来源:D. Hand,2009年,衡量分类器性能:ROC曲线下面积的一致替代方案