我对具有比更快地收缩的偏差的模型感兴趣,但是其中的误差不会以这种更快的速率收缩,因为偏差仍以收缩。特别是,我想知道足够的条件来使模型的偏差以的速率收缩。O(1/√n)
我对具有比更快地收缩的偏差的模型感兴趣,但是其中的误差不会以这种更快的速率收缩,因为偏差仍以收缩。特别是,我想知道足够的条件来使模型的偏差以的速率收缩。O(1/√n)
Answers:
通常,您需要的模型中MLE并非渐近正态,而是会收敛到其他某种分布(并且收敛速度更快)。当被估计的参数位于参数空间的边界时,通常会发生这种情况。直观上,这意味着MLE将“仅从一侧”接近参数,因此它“提高了收敛速度”,因为它不会因在参数周围“来回”移动而“分散注意力”。
一个标准的例子,是用于MLE θ
θ Ñ=Ù(Ñ)
其有限样本分布为
˚F θ Ñ = (θ Ñ )ñθ Ñ,˚F θ = Ñ (θ Ñ )ñ - 1θ ñ
È(θ Ñ)= Ñn + 1个 θ⟹乙(θ)= - 1n + 1个 θ
所以乙(θ Ñ)= Ö (1 / Ñ )。但是,相同的增长率也适用于方差。
你也可以验证,以获得极限分布,我们需要看看变量ñ (θ - θ ñ),(即我们需要通过规模ñ),因为
P [ Ñ (θ - θ Ñ)≤ Ž ] = 1 - P [ θ Ñ ≤ θ - (Ž / Ñ )]
= 1 − 1θ Ñ ⋅(θ+-žÑ)ñ=1-θÑθ Ñ ⋅(1个+-ž / θn)n
→1−e−z/θ
which is the CDF of the Exponential distribution.
I hope this provides some direction.
在我其他答案中的评论之后(并再次查看OP的标题!),这是对该问题的不太严格的理论探索。
We want to determine whether Bias B(ˆθn)=E(ˆθn)−θ
B(ˆθn)=O(1/nδ),√Var(ˆθn)=O(1/nγ),γ≠δ???
We have
B(ˆθn)=O(1/nδ)⟹limnδE(ˆθn)<K⟹limn2δ[E(ˆθn)]2<K′
⟹[E(ˆθn)]2=O(1/n2δ)
while
√Var(ˆθn)=O(1/nγ)⟹limnγ√E(ˆθ2n)−[E(ˆθn)]2<M
⟹lim√n2γE(ˆθ2n)−n2γ[E(ˆθn)]2<M
⟹limn2γE(ˆθ2n)−limn2γ[E(ˆθn)]2<M′
We see that (2)
A) both components are O(1/n2γ)
B) But it may also hold if
limn2γ[E(ˆθn)]2→0⟹[E(ˆθn)]2=o(1/n2γ)
For (3) to be compatible with (1), we must have
n2γ<n2δ⟹δ>γ
So it appears that in principle it is possible to have the Bias converging at a faster rate than the square root of the variance. But we cannot have the square root of the variance converging at a faster rate than the Bias.