让我们假设我们有两个独立的伯努利随机变量的样本,和。
我们如何证明吗?
假设。
让我们假设我们有两个独立的伯努利随机变量的样本,和。
我们如何证明吗?
假设。
Answers:
放 ,b=√, 甲=(ˉX1-θ1)/一个, 乙=(ˉX2-θ2)/b。我们有 甲→dÑ(0,1),乙→dÑ(0,1)。在的特性功能方面则意味着 φ甲(吨)≡ÈÈ 我们要证明 D:= a
由于和B是独立的,所以 ϕ D(t )= ϕ A (a 因为我们希望它是。
该证明不完整。在这里,我们需要一些估计来统一特征函数。但是,在考虑中的情况下,我们可以进行显式计算。把。 φ X 1 ,1(吨) 为t3m-3/2→0。因此,对于固定的t, ϕD(t)=(1−a2t2
Note that similar calculations may be done for arbitrary (not necessarily Bernoulli) distributions with finite second moments, using the expansion of characteristic function in terms of the first two moments.
Proving your statement is equivalent to proving the (Levy-Lindenberg) Central Limit Theorem which states
If is a sequence of i.i.d random variable with finite mean and finite variance then
Here that is the sample variance.
Then it is easy to see that if we put
and
(There's a last passage, and you have to adjust this a bit for the general case where but I have to go now, will finish tomorrow or you can edit the question with the final passage as an exercise )