xgboost中min_child_weight参数的定义为:
子级中实例重量的最小总和(hessian)。如果树分区步骤导致叶节点的实例权重之和小于min_child_weight,则构建过程将放弃进一步的分区。在线性回归模式下,这仅对应于每个节点中需要的最少实例数。越大,算法将越保守。
我已经在xgboost上阅读了很多东西,包括原始论文(请参见公式8和等式9后面的文章),该问题以及与xgboost有关的大多数事情,这些事都出现在Google搜索的前几页中。;)
基本上我还是不满意我们为什么要限制粗麻布的总和?从原始论文开始,我唯一的想法是,它与加权分位数草图部分(以及公式3的平方化加权平方损失的重新制定)有关,其中是每个实例的“权重”。
另一个问题涉及为什么线性回归模式中的实例数仅仅是个数?我想这与平方和方程的二阶导数有关吗?