我最近一直在使用MCMCglmm
包裹。我对文档中称为R结构和G结构的内容感到困惑。这些似乎与随机效应有关-特别是为它们的先验分布指定参数,但是文档中的讨论似乎假设读者知道这些术语是什么。例如:
具有3个可能元素的先验规范的可选列表:R(R结构)G(G结构)和B(固定效应).............方差结构(R和G)的先验)列出了具有逆Wishart的期望(协方差)(V)和置信度参数(nu)的列表
...取自 这里取得。
编辑:请注意,我已经按照斯蒂芬的评论改写了其余的问题。
任何人都可以阐明什么R-结构和G-结构是光,在其中线性预测器是一个简单的方差分量模型的上下文中
我用随附的一些数据制作了以下示例 MCMCglmm
> require(MCMCglmm)
> require(lme4)
> data(PlodiaRB)
> prior1 = list(R = list(V = 1, fix=1), G = list(G1 = list(V = 1, nu = 0.002)))
> m1 <- MCMCglmm(Pupated ~1, random = ~FSfamily, family = "categorical",
+ data = PlodiaRB, prior = prior1, verbose = FALSE)
> summary(m1)
G-structure: ~FSfamily
post.mean l-95% CI u-95% CI eff.samp
FSfamily 0.8529 0.2951 1.455 160
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 1 1 1 0
Location effects: Pupated ~ 1
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -1.1630 -1.4558 -0.8119 463.1 <0.001 ***
---
> prior2 = list(R = list(V = 1, nu = 0), G = list(G1 = list(V = 1, nu = 0.002)))
> m2 <- MCMCglmm(Pupated ~1, random = ~FSfamily, family = "categorical",
+ data = PlodiaRB, prior = prior2, verbose = FALSE)
> summary(m2)
G-structure: ~FSfamily
post.mean l-95% CI u-95% CI eff.samp
FSfamily 0.8325 0.3101 1.438 79.25
R-structure: ~units
post.mean l-95% CI u-95% CI eff.samp
units 0.7212 0.04808 2.427 3.125
Location effects: Pupated ~ 1
post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) -1.1042 -1.5191 -0.7078 20.99 <0.001 ***
---
> m2 <- glmer(Pupated ~ 1+ (1|FSfamily), family="binomial",data=PlodiaRB)
> summary(m2)
Generalized linear mixed model fit by the Laplace approximation
Formula: Pupated ~ 1 + (1 | FSfamily)
Data: PlodiaRB
AIC BIC logLik deviance
1020 1029 -508 1016
Random effects:
Groups Name Variance Std.Dev.
FSfamily (Intercept) 0.56023 0.74849
Number of obs: 874, groups: FSfamily, 49
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.9861 0.1344 -7.336 2.2e-13 ***
因此,基于从斯特凡我的意见认为摹结构是。但评论也说,将R结构是σ 2 0 Ë然而,这似乎并没有出现在输出。lme4
请注意,来自的结果lme4/glmer()
与MCMC的两个示例都一致MCMCglmm
。
所以,是用于R结构和为什么没有这出现在输出为?lme4/glmer()
lme4