我正在构建一个Android应用程序,该应用程序在睡眠期间记录加速度计数据,以便分析睡眠趋势并有选择地在轻度睡眠期间将用户唤醒在所需时间附近。
我已经建立了收集和存储数据以及警报的组件。我仍然需要以一种非常有意义和清晰的方式来应对显示和保存睡眠数据的难题,最好也可以进行分析。
几张图片说了两千个字:(由于重复率低,我只能发布一个链接)
编辑)这两个图表都反映了校准-有一个最小的``噪声''过滤器和一个最大截止过滤器以及一个警报触发电平(白线)
不幸的是,这些都不是最优的解决方案-第一个对于普通用户来说有点难以理解,第二个更容易理解,却隐藏了很多实际情况。特别是,平均消除了运动中尖峰的细节,我认为这些可能是有意义的。
那么,为什么这些图表如此重要?这些时间序列会在整个晚上作为对用户的反馈进行显示,并将在以后存储以供查看/分析。平滑处理将理想地降低内存成本(RAM和存储),并使这些资源匮乏的电话/设备上的渲染速度更快。
显然,有一种更好的方法来平滑数据-我有一些模糊的想法,例如使用线性回归来找出运动中的“尖锐”变化,并据此修改移动平均值的平滑度。在深入研究可以更优化地解决问题之前,我确实需要更多指导和意见。
谢谢!