因此,我得到了大约60 x 1000的矩阵。我将其视为具有1000个特征的60个对象。这60个对象分为3类(a,b,c)。每个类别20个对象,我们知道真正的分类。我想在这60个训练示例集上进行有监督的学习,并且我对分类器的准确性(和相关指标)以及对1000个特征的特征选择都感兴趣。
首先,我的命名方式如何?
现在真正的问题是:
如我所述,我可以在上面添加随机森林,或者其他任何数量的分类器。但是有一个微妙之处-我真的只关心区分c类与a类和b类。我可以合并类a和b,但是有一种很好的方法来使用先验知识,即所有非c对象都可能形成两个不同的集群吗?我更喜欢使用随机森林或其变体,因为事实证明它对类似于我的数据有效。但是我可以说服我尝试其他方法。