我正在尝试在气候数据的时间序列中检测到一些异常值,但缺少一些观测值。在网上搜索,我发现了许多可用的方法。从消除趋势和季节性成分并研究其余部分的意义上讲,其中的stl分解似乎很有吸引力。阅读STL:一种基于黄土的季节性趋势分解程序,stl
在确定分配可变性的设置方面似乎很灵活,不受异常值的影响,即使缺少值也可以应用。但是,尝试使用R
,经过四年的观察并根据http://stat.ethz.ch/R-manual/R-patched/library/stats/html/stl.html定义所有参数,我遇到了错误:
"time series contains internal NAs"
(当时na.action=na.omit
)和
"series is not periodic or has less than two periods"
(当时na.action=na.exclude
)。
我仔细检查了频率是否正确定义。我在博客中看到了相关问题,但是没有找到任何可以解决此问题的建议。不可能stl
在缺少值的系列中应用?我非常不愿意对它们进行插值,因为我不想引入(并因此检测...)工件。出于同样的原因,我不知道改为使用ARIMA方法是多么明智(如果缺少值仍然是个问题)。
如果您知道一种适用stl
于缺失值的系列的方法,或者您认为我的选择在方法上不合理,或者您有更好的建议,请分享。我是该领域的新手,但堆满了(似乎...)相关信息。