我将通过一个示例提出这个问题。
假设我有一个数据集,例如波士顿住房价格数据集,其中有连续的和分类的变量。在这里,我们有一个“质量”变量(从1到10)和销售价格。通过(任意)创建质量截止值,我可以将数据分为“低”,“中”和“高”质量房屋。然后,使用这些分组,我可以绘制销售价格的直方图。像这样:
在此,“低”是,和“高”是> 7上的“质量”的分数。现在,我们可以得出三个组中每个组的销售价格分布。显然,中型和高质量房屋的位置中心不同。现在,完成所有这些操作后,我认为“嗯。位置中心似乎有所不同!为什么不对均值进行t检验?”。然后,我得到一个p值,它似乎正确地拒绝了均值没有差异的零假设。
现在,假设在绘制数据之前,我没有想到要检验此假设。
这是在挖泥吗?
如果我想:“我敢打赌,优质房子的价格会更高,因为我以前是住在这所房子里的人。我要对数据进行绘图。啊哈!看起来不一样!时间还在吗?”进行t检验!”
自然地,如果收集数据集是为了一开始就检验这个假设,那不是数据挖掘。但是通常必须处理提供给我们的数据集,并被告知“寻找模式”。考虑到这个模糊的任务,某人如何避免数据挖掘?创建测试数据的保留集?可视化是否“算作”窥探机会来测试数据提出的假设?