深入研究神经网络文献时,我们发现了具有神经形态拓扑结构的其他方法(“神经网络”架构)。而且我并不是在说通用逼近定理。示例如下。
然后,让我感到奇怪的是:人工神经网络的定义是什么?它的拓扑似乎涵盖了所有内容。
例子:
我们做出的第一个标识是在PCA和线性自动编码器之间,编码器和解码器具有约束权重,而瓶颈层则具有阈值激活。
此外,在线性模型(特殊情况下为逻辑回归)和没有隐藏层且只有一个输出层的神经网络之间进行了通用标识。此标识打开了几扇门。
傅里叶和泰勒级数?人工神经网络。SVM?人工神经网络。高斯过程?ANN(具有无限隐藏单元的单个隐藏层)。
因此,同样容易地,我们可以将具有这些算法的专门损失函数的任意正则化版本合并到神经网络框架中。
但是,我们挖掘的越多,相似之处就越多。我只是偶然发现了深度神经决策树,该树通过决策树来识别特定的ANN架构,并允许通过ANN方法(例如Gradient Descent反向传播)来学习这些决策树。由此,我们可以仅从神经网络拓扑结构构建随机森林和梯度增强决策树。
如果一切都可以表示为人工神经网络,那么什么定义了人工神经网络呢?