我对UCLA网页上有关混合效应逻辑回归的陈述感到困惑。他们显示了一个通过拟合这样的模型得到的固定效应系数表,下面的第一段似乎完全像正常的逻辑回归那样解释系数。但是,当他们谈论比值比时,他们说您必须根据随机效应来解释它们。是什么使对数奇数的解释与其指数值不同?
- 要么不需要“保持其他所有内容不变”?
- 从该模型解释固定效应系数的正确方法是什么?我总是给人的印象是“正常”逻辑回归没有任何变化,因为随机效应的期望值为零。因此,无论有无随机效应,您都可以解释完全相同的对数奇数和优势比-仅更改了SE。
估计可以基本上一如既往地解释。例如,对于IL6,IL6的单位增加与预期的缓解对数几率中的0.053单位降低相关。同样,已婚或已婚的人有望获得的缓解几率比未婚者高0.26。
许多人喜欢解释赔率。但是,当存在混合效果时,这些将具有更细微的含义。在常规logistic回归中,优势比与所有其他预测变量固定的预期优势比成正比。这是有道理的,因为我们经常对统计数据进行调整以适应其他影响(例如年龄),以获得结婚的“纯”影响或任何主要的主要预测指标。混合效应逻辑模型也是如此,此外,保持所有其他特征不变包括保持随机效应不变。也就是说,赔率是指保持年龄和IL6恒定的人以及具有相同医生或具有相同随机效应的医生的人的条件赔率