随机分配很有价值,因为它可以确保治疗与潜在结果的独立性。这就是如何导致对平均治疗效果的无偏估计。但是其他分配方案也可以系统地确保治疗与潜在结果的独立性。那么为什么我们需要随机分配呢?换句话说,与非随机分配方案相比,随机分配又有什么优点呢?
令为治疗分配的向量,其中每个元素为0(未分配给治疗的单位)或1(分配给治疗的单位)。在一个JASA制品,安格里斯特,Imbens,和Rubin(1996,446-47)说治疗分配是随机的,如果表示所有\ mathbf {c}和\ mathbf {c'},使得\ iota ^ T \ mathbf {c} = \ iota ^ T \ mathbf {c'},其中\ iota是一个所有元素等于1的列向量。
换句话说,如果包括m个治疗分配的任何分配向量与包括m个治疗分配的任何其他向量一样有可能,则分配是随机的。
但是,为了确保潜在结果与治疗分配的独立性,足以确保研究中的每个单元都具有相等的分配给治疗的可能性。即使大多数治疗分配向量的选择概率为零,也很容易发生这种情况。即,即使在非随机分配下也可能发生。
这是一个例子。我们想用四个单元运行一个实验,其中两个单元将被正确处理。有六个可能的分配向量:
- 1100
- 1010
- 1001
- 0110
- 0101
- 0011
每个数字中的第一个数字表示是否已治疗第一个单元,第二个数字表示是否已治疗第二个单元,依此类推。
假设我们进行了一个实验,其中排除了赋值向量3和4的可能性,但是其中每个其他向量的选择机会均等(25%)。从AIR的意义上讲,该方案不是随机分配。但可以预料的是,这将导致平均治疗效果的无偏估计。那绝不是偶然的。任何给予受试者相等分配给治疗可能性的分配方案,将允许对ATE进行无偏估计。
那么:为什么我们需要AIR的随机分配?我的论点植根于随机推理。如果有人以基于模型的推理来思考,那么AIR的定义似乎更可辩护吗?