我的数据具有不变的最少数量的功能,以及一些可以更改并对结果产生重大影响的其他功能。我的数据集如下所示:
功能包括A,B,C(始终存在)和D,E,F,G,H(有时存在)
A = 10, B = 10, C = 10 outcome = 10
A = 8, B = 7, C = 8 outcome = 8.5
A = 10, B = 5, C = 11, D = 15 outcome = 178
A = 10, B = 10, C = 10, E = 10, G = 18 outcome = 19
A = 10, B = 8, C = 9, E = 8, F = 4 outcome = 250
A = 10, B = 11, C = 13, E = 8, F = 4 outcome = 320
...
我想预测结果值,而附加参数的组合对于确定结果非常重要。在此示例中,E和F的存在导致很大的结果,而E和G的存在却没有。哪种机器学习算法或技术可以很好地捕获这种现象?