我试图重现两者之间lm
以及lmer
重复测量(2x2x2)之间的几个交互测试。我想比较这两种方法的原因是因为SPSS的重复测量GLM产生的结果与lm
此处介绍的方法完全相同,因此最后我想比较SPSS与R-lmer。到目前为止,我仅设法(紧密地)复制了其中的一些交互。
您会在下面找到一个脚本来更好地说明我的观点:
library(data.table)
library(tidyr)
library(lmerTest)
library(MASS)
set.seed(1)
N <- 100 # number of subjects
sigma <- 1 # popuplation sd
rho <- .6 # correlation between variables
# X1: a a a a b b b b
# X2: a a b b a a b b
# X3: a b a b a b a b
mu <- c(5, 3, 3, 5, 3, 5, 5, 3) # means
# Simulate the data
sigma.mat <- rep(sigma, length(mu))
S <- matrix(sigma.mat, ncol = length(sigma.mat), nrow = length(sigma.mat))
Sigma <- t(S) * S * rho
diag(Sigma) <- sigma**2
X <- data.table( mvrnorm(N, mu, Sigma) )
setnames(X, names(X), c("aaa", "aab", "aba", "abb", "baa", "bab", "bba", "bbb"))
X[, id := 1:.N]
# Long format
XL <- data.table( gather(X, key, Y, aaa:bbb) )
XL[, X1 := substr(key, 1, 1)]
XL[, X2 := substr(key, 2, 2)]
XL[, X3 := substr(key, 3, 3)]
# Recode long format (a = +1; b = -1)
XL[, X1c := ifelse(X1 == "a", +1, -1)]
XL[, X2c := ifelse(X2 == "a", +1, -1)]
XL[, X3c := ifelse(X3 == "a", +1, -1)]
### Composite scores to be used with lm
# X2:X3 2-way interaction (for half the data; i.e. when X1 == "a")
X[, X1a_X2.X3 := (aaa - aab) - (aba - abb)]
# X2:X3 2-way interaction (for all the data)
X[, aa := (aaa + baa) / 2]
X[, ab := (aab + bab) / 2]
X[, ba := (aba + bba) / 2]
X[, bb := (abb + bbb) / 2]
X[, X2.X3 := (aa - ab) - (ba - bb)]
# X1:X2:X3 3-way interaction (for all the data)
X[, X1.X2.X3 := ( (aaa - aab) - (aba - abb) ) - ( (baa - bab) - (bba - bbb) )]
### Fit models
# X2:X3 2-way interaction (for half the data; i.e. when X1 == "a")
summary( lm(X1a_X2.X3 ~ 1, X) ) # t = 34.13303
summary( lmer(Y ~ X2c*X3c + (X2c+X3c|id), XL[X1 == "a"]) ) # t = 34.132846 close match
summary( lmer(Y ~ X2c*X3c + (X2c+X3c||id), XL[X1 == "a"]) ) # t = 34.134624 close match
# X2:X3 2-way interaction (for all the data)
summary( lm(X2.X3 ~ 1, X) ) # t = 0.3075025
summary( lmer(Y ~ X2c*X3c + (X2c+X3c|id), XL) ) # t = 0.1641932
summary( lmer(Y ~ X2c*X3c + (X2c+X3c||id), XL) ) # t = 0.1640710
summary( lmer(Y ~ X2c*X3c + (X2c*X3c|id), XL) ) # t = 0.1641765
anova( lmer(Y ~ X2c*X3c + (X2c*X3c|id), XL), ddf = "Kenward-Roger" ) # t = 0.1643168
summary( lmer(Y ~ X2c*X3c + (X2c*X3c|id), XL, REML = FALSE) ) # t = 0.1645303
summary( lmer(Y ~ X2c*X3c + (X2c*X3c||id), XL) ) # t = 0.1640704
# X1:X2:X3 3-way interaction (for all the data)
summary( lm(X1.X2.X3 ~ 1, X) ) # t = 46.50177
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c - X1c:X2c:X3c|id), XL) ) # t = 49.0317599
anova( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c - X1c:X2c:X3c|id), XL), ddf = "Kenward-Roger" ) # t = 49.03176
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c - X1c:X2c:X3c|id), XL, REML = FALSE) ) # t = 49.2677606
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c - X1c:X2c:X3c||id), XL) ) # t = 46.5193774 close match
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c|id), XL) ) # unidentifiable
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c|id), XL,
control = lmerControl(check.nobs.vs.nRE="ignore")) ) # t = 46.5148684 close match
从上面可以看到,没有一个lm
估计值与这些估计值完全匹配lmer
。尽管某些结果非常相似,并且可能仅由于数值/计算原因而有所不同。两种估算方法之间的差距特别大X2:X3 2-way interaction (for all the data)
。
我的问题是,是否有一种方法可以用两种方法获得完全相同的结果,以及是否有一种正确的方法来执行分析lmer
(尽管它可能与lm
结果不匹配)。
奖金:
我注意到t value
与三向交互相关的因素受编码方式的影响,这对我来说似乎很奇怪:
summary( lmer(Y ~ X1*X2*X3 + (X1*X2*X3 - X1:X2:X3||id), XL) ) # t = 48.36
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c - X1c:X2c:X3c||id), XL) ) # t = 56.52
1
+1是因为它看起来很有趣,但我不知道您在这里做什么:)您可以用文字或数学方式解释为什么这些lm和lmer调用应产生相同的系数吗?整个练习背后的逻辑是什么?
—
amoeba
@amoeba我更新了我的帖子以阐明此帖子的目的。基本上,我想使用来重现SPSS的结果(可以将其转换为
—
垫
lm
模型)lmer
,并且还知道对此类数据进行正确的 lmer
分析是什么。
对于完整数据进行双向交互时,差异较大的原因是每个参数组合有2个数据点。直觉是混合模型的有效样本量比混合模型小2倍
—
变形虫
lm
; 我怀疑这就是为什么t统计量大约要小2倍的原因lmer
。使用更简单的2x2设计并查看主要效果,您可能可以观察到相同的现象,而不必担心2x2x2和复杂的交互。