我想比较2个不同的分类器,以解决使用大型训练数据集的多类文本分类问题。我怀疑我应该使用ROC曲线还是学习曲线来比较这两个分类器。
一方面,学习曲线对于确定训练数据集的大小很有用,因为您可以找到分类器停止学习(并可能降级)的数据集的大小。因此,在这种情况下,最好的分类器可能是精度最高,数据集大小最小的分类器。
另一方面,ROC曲线可让您在灵敏度/特异性之间找到适当权衡的点。在这种情况下,最好的分类器就是最接近左上角的分类器,它是所有FPR中最高的TPR。
我应该同时使用两种评估方法吗?学习曲线较好的方法的ROC曲线是否可能变差,反之亦然?
您是否有一个分类器的示例,其中训练集变大时性能会降低?
—
mogron 2012年