我正在尝试在中拟合多变量(即多响应)混合模型R。除了ASReml-r和SabreR软件包(需要外部软件)之外,似乎只有在中才有可能MCMCglmm。Jarrod Hadfield 在包装随附的论文MCMCglmm(pp.6)中描述了拟合模型的过程,例如将多个响应变量重塑为一个长格式变量,然后抑制总体截距。我的理解是,抑制截距会使响应变量每个级别的系数解释变为该级别的平均值。鉴于以上所述,因此是否可以使用来拟合多元混合模型lme4?例如:
data(mtcars)
library(reshape2)
mtcars <- melt(mtcars, measure.vars = c("drat", "mpg", "hp"))
library(lme4)
m1 <- lmer(value ~ -1 + variable:gear + variable:carb + (1 | factor(carb)),
    data = mtcars)
summary(m1)
#  Linear mixed model fit by REML 
#  Formula: value ~ -1 + variable:gear + variable:carb + (1 | factor(carb)) 
#     Data: mtcars 
#   AIC   BIC logLik deviance REMLdev
#   913 933.5 -448.5    920.2     897
#  Random effects:
#   Groups       Name        Variance Std.Dev.
#   factor(carb) (Intercept) 509.89   22.581  
#   Residual                 796.21   28.217  
#  Number of obs: 96, groups: factor(carb), 6
#  
#  Fixed effects:
#                    Estimate Std. Error t value
#  variabledrat:gear  -7.6411     4.4054  -1.734
#  variablempg:gear   -1.2401     4.4054  -0.281
#  variablehp:gear     0.7485     4.4054   0.170
#  variabledrat:carb   5.9783     4.7333   1.263
#  variablempg:carb    3.3779     4.7333   0.714
#  variablehp:carb    43.6594     4.7333   9.224
人们将如何解释这一模型中的系数?这种方法也适用于广义线性混合模型吗?