我想知道平均值和方差彼此独立(即,方差不是均值的函数)时,除正态以外是否还有其他分布。
我想知道平均值和方差彼此独立(即,方差不是均值的函数)时,除正态以外是否还有其他分布。
Answers:
注意:请阅读@G的答案。Jay Kerns,请参见Carlin和Lewis 1996或您最喜欢的概率参考,作为背景的均值和方差计算的期望值和随机变量的第二矩。
对Carlin和Lewis(1996)中附录A的快速浏览提供了以下分布,在这方面与正态相似,因为在均值和方差的计算中未使用相同的分布参数。正如@robin所指出的那样,当从样本中计算参数估计时,需要样本均值来计算sigma。
多元正态
t and multivariate t:
Double exponential:
Cauchy: With some qualification it could be argued that the mean and variance of the Cauchy are not dependent.
and do not exist
Reference
In fact, the answer is "no". Independence of the sample mean and variance characterizes the normal distribution. This was shown by Eugene Lukacs in "A Characterization of the Normal Distribution", The Annals of Mathematical Statistics, Vol. 13, No. 1 (Mar., 1942), pp. 91-93.
I didn't know this, but Feller, "Introduction to Probability Theory and Its Applications, Volume II" (1966, pg 86) says that R.C. Geary proved this, too.