精简版:
我有一个正在测试平稳性的时间序列气候数据。根据先前的研究,我希望数据的基础模型(或可以说是“生成”)具有截距项和正线性时间趋势。为了测试这些数据的平稳性,我是否应该使用包含截距和时间趋势(即等式#3)的Dickey-Fuller检验?
还是我应该使用仅包含截距的DF检验,因为我认为该模型所基于的方程的第一个差异只有截距?
长版:
如上所述,我有一个时间序列的气候数据正在测试平稳性。根据先前的研究,我希望数据基础模型具有拦截项,正线性时间趋势和一些正态分布的误差项。换句话说,我希望基础模型看起来像这样:
其中是正态分布。因为我假设基础模型具有截距和线性时间趋势,所以我使用简单的Dickey-Fuller检验的方程式#3测试了单位根,如下所示:
该测试返回了一个临界值,该临界值将导致我拒绝原假设,并得出基本模型非平稳的结论。但是,如果我正确运用这一点,因为即使我的问题底层模型假设有一个截距和时间趋势,这并不意味着第一个区别的意志为好。相反,实际上,如果我的数学正确的话。
计算基于所述方程的第一差假定的主要模型给出:
因此,第一差似乎仅具有一个截距,而不是一个时间的趋势。
我认为我的问题与这一问题类似,但我不确定如何将该答案应用于我的问题。
样本数据:
这是我正在使用的一些示例温度数据。
64.19749  
65.19011  
64.03281  
64.99111  
65.43837  
65.51817  
65.22061  
65.43191  
65.0221  
65.44038  
64.41756  
64.65764  
64.7486  
65.11544  
64.12437  
64.49148  
64.89215  
64.72688  
64.97553  
64.6361  
64.29038  
65.31076  
64.2114  
65.37864  
65.49637  
65.3289  
65.38394  
65.39384  
65.0984  
65.32695  
65.28  
64.31041  
65.20193  
65.78063  
65.17604  
66.16412  
65.85091  
65.46718  
65.75551  
65.39994  
66.36175  
65.37125  
65.77763  
65.48623  
64.62135  
65.77237  
65.84289  
65.80289  
66.78865  
65.56931  
65.29913  
64.85516  
65.56866  
64.75768  
65.95956  
65.64745  
64.77283  
65.64165  
66.64309  
65.84163  
66.2946  
66.10482  
65.72736  
65.56701  
65.11096  
66.0006  
66.71783  
65.35595  
66.44798  
65.74924  
65.4501  
65.97633  
65.32825  
65.7741  
65.76783  
65.88689  
65.88939  
65.16927  
64.95984  
66.02226  
66.79225  
66.75573  
65.74074  
66.14969  
66.15687  
65.81199  
66.13094  
66.13194  
65.82172  
66.14661  
65.32756  
66.3979  
65.84383  
65.55329  
65.68398  
66.42857  
65.82402  
66.01003  
66.25157  
65.82142  
66.08791  
65.78863  
66.2764  
66.00948  
66.26236  
65.40246  
65.40166  
65.37064  
65.73147  
65.32708  
65.84894  
65.82043  
64.91447  
65.81062  
66.42228  
66.0316  
65.35361  
66.46407  
66.41045  
65.81548  
65.06059  
66.25414  
65.69747  
65.15275  
65.50985  
66.66216  
66.88095  
65.81281  
66.15546  
66.40939  
65.94115  
65.98144  
66.13243  
66.89761  
66.95423  
65.63435  
66.05837  
66.71114 


