MVA不等式背后的想法很简单:PCA等效于估计变量的相关矩阵。您正在尝试猜测p p − 12 (对称矩阵)系数来自 ñ p数据。(这就是为什么您应该有n >> p。)
等效性可以这样看:每个PCA步骤都是一个优化问题。我们试图找到表示最大方差的方向。即:
米一个X (一Ť一世∗ Σ ∗ a一世)
哪里 σ 是协方差矩阵。
在约束下:
一种Ť一世* a一世= 1
(正常化)
一种Ť一世* aĴ= 0
(对于
Ĵ < 我,正交性以及之前的组件)
这些问题的解决方案显然是的特征向量 Σ associated to their eigenvalues. I have to admit that I don't remember the exact formulation, but eigenvenctors depends on the coefficients of σ. Modulo normalisation of the variables, covariance matrix and correlation matrix are the same thing.
Taking n = p is more or less equivalent to guess a value with only two datas... it's not reliable.
There's no rules of thumbs, just keep in mind that PCA is more or less the same thing as guessing a value from 2np values.