关于对事件生存时间进行Cox比例风险建模时的倾向得分加权(IPTW):
我有前瞻性的注册表数据,我们希望了解大多数情况下患者已经在基线时服用的药物的治疗效果。因此,我不确定如何最好地分析数据。潜在地,一些基线变量在很大程度上受到治疗的影响,而不是相反(例如某些生物标志物)。我对于应该在倾向评分模型中估计权重的哪些协变量以及应该在coxph
模型中作为协变量的哪些协变量(如果有的话)不知所措。正确方向的任何提示都将有所帮助!到目前为止,我还没有找到任何有关CoxPh建模的文献。
我认为协变量代表Cox PH协变量应包括代表基线(可能)影响治疗结果的基线治疗,但我不确定。
如何确定应将哪些变量作为协变量包括在Cox模型中,而不是用于计算倾向得分权重?
后续问题:
我了解评估已经开始的某种干预措施的治疗效果的继承问题-即在开始观察之前在患者中普遍存在。关于引入与风险的时间变化相关的偏见(例如,不良副作用在治疗的第一年更加普遍)以及受治疗影响的协变量。如果我没记错的话,这是由于心血管终点和激素替代疗法引起的观察性和随机性差异的原因。另一方面,在我的数据集中,我们有兴趣查看治疗的可能不利影响。
如果我使用倾向评分调整来调查普遍使用者的治疗效果,即在观察开始之前已经使用过药物,则在队列数据中,我们会观察到药物治疗的不利影响(这就是我们所要寻找的)。我可以排除高估与治疗相关的风险的可能性吗?即是说,只要风险显着增加,它是“绝对”没有保护意义的吗?
我无法完全想象一个例子,在这种情况下,这种偏见会导致高估虚假风险关联的风险。