我正在探索一项10项自我报告测评的心理测量特性。我有两个独立样本中的大约400个案例。这些项目以4点李克特量表完成。全民教育显然支持单因素解决方案(例如,第一特征值超过6,所有其他本征值低于1),而克朗巴赫的alpha值很好(例如.90)。没有项目具有较低的项目-总相关性。
我最初想做一个CFA(EFA只是我发现CFA不好之后的后续工作),测试一个单因素模型。令我惊讶的是,该模型的适用性相对较差:
CFI=.91
TLI=.88
RMSEA=.13
此外,每个项目的负载都非常好(.65+)。
奇怪的是SRMR=.05
,这是可以接受的/很好。
修改索引建议我将各地的错误相关联。如果有明确的理由这样做(例如,某些项目的措词非常相似),我会这样做;但是,所有度量的措词都类似,并且将所有错误术语关联起来将是奇怪而痛苦的。
我从未见过这样的情况。这项措施在内部是一致的,显然是全民教育中的一个因素,但在CFA中显示不佳。在两个独立的样本(来自不同大陆)中,结果是一致的。我尝试了两因素CFA(将5个随机项目分组),拟合度相同,甚至略胜一筹。
这是我的问题:
- 考虑到EFA / Cronbach alpha /因子负荷,为什么CFI / TLI / RMSEA的拟合度如此差?
- 为什么SRMR好,而其他指数却不好?我知道他们会衡量不同的事物,但以我的经验,他们几乎总是会聚在一起。
- 我应该关联一些错误吗?
示例项目:
- 你有缺点的想法
- 您的想法很难忘记
- 你一直在想情况