Lee等人在“ 用于分层表示的可扩展无监督学习的卷积深度信念网络 ”中。(PDF)提出了卷积DBN。还对该方法进行了图像分类评估。这听起来很合逻辑,因为具有自然的局部图像特征,例如小角和边缘等。
Lee等人在“ 使用卷积深度置信网络进行音频分类的无监督特征学习 ”中。等 此方法适用于不同类别的音频。说话者识别,性别识别,电话分类以及一些音乐流派/艺术家分类。
如何将网络的卷积部分解释为音频,就像将图像解释为边缘一样?
谁有论文的代码?
Lee等人在“ 用于分层表示的可扩展无监督学习的卷积深度信念网络 ”中。(PDF)提出了卷积DBN。还对该方法进行了图像分类评估。这听起来很合逻辑,因为具有自然的局部图像特征,例如小角和边缘等。
Lee等人在“ 使用卷积深度置信网络进行音频分类的无监督特征学习 ”中。等 此方法适用于不同类别的音频。说话者识别,性别识别,电话分类以及一些音乐流派/艺术家分类。
如何将网络的卷积部分解释为音频,就像将图像解释为边缘一样?
Answers: