我最近开始学习广义线性混合模型,并且正在使用R探索将组成员身份视为固定或随机效应有何不同。特别是,我正在查看此处讨论的示例数据集:
http://www.ats.ucla.edu/stat/mult_pkg/glmm.htm
http://www.ats.ucla.edu/stat/r/dae/melogit.htm
正如本教程中概述的那样,Doctor ID的作用是可观的,我期望随机截距的混合模型能够提供更好的结果。但是,比较两种方法的AIC值表明此模型较差:
> require(lme4) ; hdp = read.csv("http://www.ats.ucla.edu/stat/data/hdp.csv")
> hdp$DID = factor(hdp$DID) ; hdp$Married = factor(hdp$Married)
> GLM = glm(remission~Age+Married+IL6+DID,data=hdp,family=binomial);summary(GLM)
Call:
glm(formula = remission ~ Age + Married + IL6 + DID, family = binomial,
data = hdp)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.5265 -0.6278 -0.2272 0.5492 2.7329
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.560e+01 1.219e+03 -0.013 0.990
Age -5.869e-02 5.272e-03 -11.133 < 2e-16 ***
Married1 2.688e-01 6.646e-02 4.044 5.26e-05 ***
IL6 -5.550e-02 1.153e-02 -4.815 1.47e-06 ***
DID2 1.805e+01 1.219e+03 0.015 0.988
DID3 1.932e+01 1.219e+03 0.016 0.987
[...]
DID405 1.566e+01 1.219e+03 0.013 0.990
DID405 1.566e+01 1.219e+03 0.013 0.990
DID406 -2.885e-01 3.929e+03 0.000 1.000
DID407 2.012e+01 1.219e+03 0.017 0.987
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 10353 on 8524 degrees of freedom
Residual deviance: 6436 on 8115 degrees of freedom
AIC: 7256
Number of Fisher Scoring iterations: 17
> GLMM = glmer(remission~Age+Married+IL6+(1|DID),data=hdp,family=binomial) ; m
Generalized linear mixed model fit by the Laplace approximation
Formula: remission ~ Age + Married + IL6 + (1 | DID)
Data: hdp
AIC BIC logLik deviance
7743 7778 -3867 7733
Random effects:
Groups Name Variance Std.Dev.
DID (Intercept) 3.8401 1.9596
Number of obs: 8525, groups: DID, 407
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.461438 0.272709 5.359 8.37e-08 ***
Age -0.055969 0.005038 -11.109 < 2e-16 ***
Married1 0.260065 0.063736 4.080 4.50e-05 ***
IL6 -0.053288 0.011058 -4.819 1.44e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) Age Marrd1
Age -0.898
Married1 0.070 -0.224
IL6 -0.162 0.012 -0.033
> extractAIC(GLM) ; extractAIC(GLMM)
[1] 410.000 7255.962
[1] 5.000 7743.188
因此,我的问题是:
(1)比较两个函数提供的AIC值是否合适?如果是这样,为什么固定效果模型会做得更好?
(2)识别固定或随机效应是否更重要的最佳方法是什么(即,量化因医生引起的变异性比患者特征更重要)?
DID
作为两个固定的效果,并在第二个模型中的随机拦截。而且,在第一个模型中将其作为固定效应意味着选择b / t这2个将是关于考虑效应的方法DID
,而不是是否需要包括它。另一方面,我注意到您有一个项目(2);您是说要在某处放置项目(1)吗?