除了@gung的答案外,我还将尝试提供该anova
函数实际测试内容的示例。我希望这使您能够决定哪些测试适合您对测试感兴趣的假设。
假设您有一个结果和3个预测变量:x 1,x 2和x 3。现在,如果您的逻辑回归模型为。运行时,该函数按顺序比较以下模型:ÿX1个X2X3my.mod <- glm(y~x1+x2+x3, family="binomial")
anova(my.mod, test="Chisq")
glm(y~1, family="binomial")
与 glm(y~x1, family="binomial")
glm(y~x1, family="binomial")
与 glm(y~x1+x2, family="binomial")
glm(y~x1+x2, family="binomial")
与 glm(y~x1+x2+x3, family="binomial")
因此,通过在每个步骤中添加一个变量,它依次将较小的模型与下一个更复杂的模型进行比较。每个比较都是通过似然比测试(LR测试;请参见下面的示例)完成的。据我所知,这些假设很少引起人们的兴趣,但这必须由您决定。
这是一个示例R
:
mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
mydata$rank <- factor(mydata$rank)
my.mod <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
summary(my.mod)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.989979 1.139951 -3.500 0.000465 ***
gre 0.002264 0.001094 2.070 0.038465 *
gpa 0.804038 0.331819 2.423 0.015388 *
rank2 -0.675443 0.316490 -2.134 0.032829 *
rank3 -1.340204 0.345306 -3.881 0.000104 ***
rank4 -1.551464 0.417832 -3.713 0.000205 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# The sequential analysis
anova(my.mod, test="Chisq")
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 399 499.98
gre 1 13.9204 398 486.06 0.0001907 ***
gpa 1 5.7122 397 480.34 0.0168478 *
rank 3 21.8265 394 458.52 7.088e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# We can make the comparisons by hand (adding a variable in each step)
# model only the intercept
mod1 <- glm(admit ~ 1, data = mydata, family = "binomial")
# model with intercept + gre
mod2 <- glm(admit ~ gre, data = mydata, family = "binomial")
# model with intercept + gre + gpa
mod3 <- glm(admit ~ gre + gpa, data = mydata, family = "binomial")
# model containing all variables (full model)
mod4 <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
anova(mod1, mod2, test="LRT")
Model 1: admit ~ 1
Model 2: admit ~ gre
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 399 499.98
2 398 486.06 1 13.92 0.0001907 ***
anova(mod2, mod3, test="LRT")
Model 1: admit ~ gre
Model 2: admit ~ gre + gpa
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 398 486.06
2 397 480.34 1 5.7122 0.01685 *
anova(mod3, mod4, test="LRT")
Model 1: admit ~ gre + gpa
Model 2: admit ~ gre + gpa + rank
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 397 480.34
2 394 458.52 3 21.826 7.088e-05 ***
psummary(my.mod)
- 对于系数
x1
:glm(y~x2+x3, family="binomial")
与
glm(y~x1+x2+x3, family="binomial")
- 对于系数
x2
:glm(y~x1+x3, family="binomial")
与glm(y~x1+x2+x3, family="binomial")
- 对于系数
x3
:glm(y~x1+x2, family="binomial")
与glm(y~x1+x2+x3, family="binomial")
因此,每个系数相对于包含所有系数的完整模型。Wald检验是似然比检验的近似值。我们还可以进行似然比检验(LR检验)。方法如下:
mod1.2 <- glm(admit ~ gre + gpa, data = mydata, family = "binomial")
mod2.2 <- glm(admit ~ gre + rank, data = mydata, family = "binomial")
mod3.2 <- glm(admit ~ gpa + rank, data = mydata, family = "binomial")
anova(mod1.2, my.mod, test="LRT") # joint LR test for rank
Model 1: admit ~ gre + gpa
Model 2: admit ~ gre + gpa + rank
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 397 480.34
2 394 458.52 3 21.826 7.088e-05 ***
anova(mod2.2, my.mod, test="LRT") # LR test for gpa
Model 1: admit ~ gre + rank
Model 2: admit ~ gre + gpa + rank
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 395 464.53
2 394 458.52 1 6.0143 0.01419 *
anova(mod3.2, my.mod, test="LRT") # LR test for gre
Model 1: admit ~ gpa + rank
Model 2: admit ~ gre + gpa + rank
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 395 462.88
2 394 458.52 1 4.3578 0.03684 *
psummary(my.mod)
rank
anova(my.mod, test="Chisq")
rank
anova(mod1.2, my.mod, test="Chisq")
p7.088 ⋅ 10− 5rank