是否可以执行几个二进制逻辑回归而不是多项式回归?从这个问题出发:多项式逻辑回归与一对多对数逻辑回归我看到该多项式回归可能具有较低的标准误差。
但是,我想使用的软件包尚未推广到多项式回归(ncvreg
:http : //cran.r-project.org/web/packages/ncvreg/ncvreg.pdf),所以我想知道是否可以简单地做而是几个二进制逻辑回归。
是否可以执行几个二进制逻辑回归而不是多项式回归?从这个问题出发:多项式逻辑回归与一对多对数逻辑回归我看到该多项式回归可能具有较低的标准误差。
但是,我想使用的软件包尚未推广到多项式回归(ncvreg
:http : //cran.r-project.org/web/packages/ncvreg/ncvreg.pdf),所以我想知道是否可以简单地做而是几个二进制逻辑回归。
Answers:
使用多项式logit模型,您可以施加所有预测概率加起来为1的约束。当您使用单独的二进制logit模型时,您不再可以施加该约束,毕竟它们是在单独的模型中估算的。因此,这将是这两种模型之间的主要区别。
正如您在下面的示例中所看到的那样(在Stata中,这是我最了解的程序),模型倾向于相似但不相同。在推断预测概率时,我将格外小心。
// some data preparation
. sysuse nlsw88, clear
(NLSW, 1988 extract)
.
. gen byte occat = cond(occupation < 3 , 1, ///
> cond(inlist(occupation, 5, 6, 8, 13), 2, 3)) ///
> if !missing(occupation)
(9 missing values generated)
. label variable occat "occupation in categories"
. label define occat 1 "high" ///
> 2 "middle" ///
> 3 "low"
. label value occat occat
.
. gen byte middle = (occat == 2) if occat !=1 & !missing(occat)
(590 missing values generated)
. gen byte high = (occat == 1) if occat !=2 & !missing(occat)
(781 missing values generated)
// a multinomial logit model
. mlogit occat i.race i.collgrad , base(3) nolog
Multinomial logistic regression Number of obs = 2237
LR chi2(6) = 218.82
Prob > chi2 = 0.0000
Log likelihood = -2315.9312 Pseudo R2 = 0.0451
-------------------------------------------------------------------------------
occat | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
high |
race |
black | -.4005801 .1421777 -2.82 0.005 -.6792433 -.121917
other | .4588831 .4962591 0.92 0.355 -.5137668 1.431533
|
collgrad |
college grad | 1.495019 .1341625 11.14 0.000 1.232065 1.757972
_cons | -.7010308 .0705042 -9.94 0.000 -.8392165 -.5628451
--------------+----------------------------------------------------------------
middle |
race |
black | .6728568 .1106792 6.08 0.000 .4559296 .889784
other | .2678372 .509735 0.53 0.599 -.7312251 1.266899
|
collgrad |
college grad | .976244 .1334458 7.32 0.000 .714695 1.237793
_cons | -.517313 .0662238 -7.81 0.000 -.6471092 -.3875168
--------------+----------------------------------------------------------------
low | (base outcome)
-------------------------------------------------------------------------------
// separate logits:
. logit high i.race i.collgrad , nolog
Logistic regression Number of obs = 1465
LR chi2(3) = 154.21
Prob > chi2 = 0.0000
Log likelihood = -906.79453 Pseudo R2 = 0.0784
-------------------------------------------------------------------------------
high | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
race |
black | -.5309439 .1463507 -3.63 0.000 -.817786 -.2441017
other | .2670161 .5116686 0.52 0.602 -.735836 1.269868
|
collgrad |
college grad | 1.525834 .1347081 11.33 0.000 1.261811 1.789857
_cons | -.6808361 .0694323 -9.81 0.000 -.816921 -.5447512
-------------------------------------------------------------------------------
. logit middle i.race i.collgrad , nolog
Logistic regression Number of obs = 1656
LR chi2(3) = 90.13
Prob > chi2 = 0.0000
Log likelihood = -1098.9988 Pseudo R2 = 0.0394
-------------------------------------------------------------------------------
middle | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
race |
black | .6942945 .1114418 6.23 0.000 .4758725 .9127164
other | .3492788 .5125802 0.68 0.496 -.6553598 1.353918
|
collgrad |
college grad | .9979952 .1341664 7.44 0.000 .7350339 1.260957
_cons | -.5287625 .0669093 -7.90 0.000 -.6599023 -.3976226
-------------------------------------------------------------------------------