我执行了多元逻辑回归分析,因变量Y
是进入某特定时期内在疗养院中的死亡,并得到以下结果(请注意,变量开始于A
连续值,而变量开始于连续值B
):
Call:
glm(Y ~ A1 + B2 + B3 + B4 + B5 + A6 + A7 + A8 + A9, data=mydata, family=binomial)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.0728 -0.2167 -0.1588 -0.1193 3.7788
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 20.048631 6.036637 3.321 0.000896 ***
A1 0.051167 0.016942 3.020 0.002527 **
B2 -0.664940 0.304299 -2.185 0.028878 *
B3 -2.825281 0.633072 -4.463 8.09e-06 ***
B4 -2.547931 0.957784 -2.660 0.007809 **
B5 -2.862460 1.385118 -2.067 0.038774 *
A6 -0.129808 0.041286 -3.144 0.001666 **
A7 0.020016 0.009456 2.117 0.034276 *
A8 -0.707924 0.253396 -2.794 0.005210 **
A9 0.003453 0.001549 2.229 0.025837 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 485.10 on 2206 degrees of freedom
Residual deviance: 417.28 on 2197 degrees of freedom
AIC: 437.28
Number of Fisher Scoring iterations: 7
(Intercept) A1 B2 B3 B4 B5 A6 A7 A8 A9
5.093426e+08 1.052499e+00 5.143045e-01 5.929197e-02 7.824340e-02 5.712806e-02 8.782641e-01 1.020218e+00 4.926657e-01 1.003459e+00
2.5 % 97.5 %
(Intercept) 3.703525e+03 7.004944e+13
A1 1.018123e+00 1.088035e+00
B2 2.832698e-01 9.337710e-01
B3 1.714448e-02 2.050537e-01
B4 1.197238e-02 5.113460e-01
B5 3.782990e-03 8.627079e-01
A6 8.099945e-01 9.522876e-01
A7 1.001484e+00 1.039302e+00
A8 2.998207e-01 8.095488e-01
A9 1.000416e+00 1.006510e+00
如您所见,所有变量都是“显着的”,因为它们的p值低于通常的阈值0.05。但是,看这些系数,我不太确定如何得出这些结果。看起来,尽管这些变量对模型有所贡献,但从优势比上看,它们似乎并没有太大的预测能力。值得注意的是,当我计算AUC时,我得到大约0.8。
我可以说,与预测死亡率相比,该模型更擅长预测死亡率(例如,预测老年人将生活在规定的期限内)?
4
这不是“多变量”模型,因为您只有一个结果/因变量。将具有多个预测变量的模型拟合称为“多重回归”。
—
晚会
我非常感谢您的评论和回答-我一定会看到rms软件包的。但是,我的问题仍然存在-大多数比值比均小于1,这是否意味着该模型中的变量更易于根据结果进行预测?
—
13年