我目前正在开发使用卷积神经网络识别面部的面部识别软件。根据我的阅读,我收集到卷积神经网络具有权重,以节省训练时间。但是,如何适应反向传播,以便可以在卷积神经网络中使用。在反向传播中,人们使用与此类似的公式来训练权重。
New Weight = Old Weight + LEARNING_RATE * 1 * Output Of InputNeuron * Delta
但是,由于在卷积神经网络中权重是共享的,因此每个权重都与多个神经元一起使用,那么如何确定使用哪个权重Output of InputNeuron
?
换句话说,由于权重是共享的,我该如何决定将权重改变多少?