我R
使用rlm()
MASS软件包中的MM权重估计了一个鲁棒的线性模型。“ ”没有为模型提供值,但是如果它是有意义的数量,我希望有一个。我也很想知道是否有一个值以稳健回归中的观测值加权的方式加权总和剩余方差是否有意义。我的一般想法是,如果出于回归的目的,我们实际上是在权重上给予某些估计值较少的影响,因为它们在某种程度上是离群值,那么也许出于计算的目的,我们也应该给出那些相同的估计影响较小?
我为和加权编写了两个简单的函数,它们在下面。我还包括了为模型HI9运行这些功能的结果。编辑:我找到了UNSW的Adelle Coster的网页,该网页提供了一个公式,其中包括权重向量,这与我计算时一样,并要求她提供更正式的参考:http://web.maths。 unsw.edu.au/~adelle/Garvan/Assays/GoodnessOfFit.html(仍在向Cross Valided寻求有关如何解释此加权。R2
SSe
SSt
#I used this function to calculate a basic r-squared from the robust linear model
r2 <- function(x){
+ SSe <- sum((x$resid)^2);
+ observed <- x$resid+x$fitted;
+ SSt <- sum((observed-mean(observed))^2);
+ value <- 1-SSe/SSt;
+ return(value);
+ }
r2(HI9)
[1] 0.2061147
#I used this function to calculate a weighted r-squared from the robust linear model
> r2ww <- function(x){
+ SSe <- sum((x$w*x$resid)^2); #the residual sum of squares is weighted
+ observed <- x$resid+x$fitted;
+ SSt <- sum((x$w*(observed-mean(observed)))^2); #the total sum of squares is weighted
+ value <- 1-SSe/SSt;
+ return(value);
+ }
> r2ww(HI9)
[1] 0.7716264
感谢所有花时间回答这个问题的人。如果我已经错过了一些很好的参考,或者上面的代码难以阅读(我不是代码专家),请接受我的道歉。