最近在分析数据时出现了以下问题。如果随机变量X遵循正态分布且Y遵循χ2n分布(其中n自由度),如何是Z=X2+Y2分布?到现在为止我想出的PDF Y2:
ψ2n(x)====∂F(x−−√)∂x(∫x√0tn/2−1⋅e−t/22n/2Γ(n/2)dt)′x12n/2Γ(n/2)⋅(x−−√)n/2−1⋅e−x√/2⋅(x−−√)′x12n/2−1Γ(n/2)⋅xn/4−1⋅e−x√/2
以及一些简化的卷积积分(具有PDF χ 2 米,其中m自由度):X2χ2m
Kmn(t):===(χ2m∗ψ2n)(t)∫t0χ2m(x)⋅ψ2n(t−x)dx(2(n+m)2+1Γ(m2)Γ(n2))−1⋅∫t0(t−x)n4−1⋅xm2−1⋅exp(−(t−x−−−−√+x)/2)dx
Does someone see a good way of calculating this integral for any real t or does it have to be computed numerically? Or am I missing a much simpler solution?