我想在一篇使用内核SVD分解数据矩阵的论文中实现一种算法。因此,我一直在阅读有关内核方法和内核PCA等的材料。但是,对于我而言,尤其是在数学细节方面,它还是很晦涩的,我有几个问题。
为什么使用内核方法?或者,内核方法有什么好处?直观的目的是什么?
是否假设与非内核方法相比,更高的维数空间在现实世界中的问题更现实,并且能够揭示数据中的非线性关系?根据材料,内核方法将数据投影到高维特征空间上,但是它们不必显式计算新的特征空间。相反,仅计算特征空间中所有数据对对的图像之间的内积就足够了。那么为什么要投影到更高维度的空间呢?
相反,SVD减少了特征空间。他们为什么要朝不同的方向做?内核方法寻求更高维度,而SVD寻求更低维度。对我来说,将它们结合起来听起来很奇怪。根据我正在阅读的论文(Symeonidis等,2010),引入内核SVD而不是SVD可以解决数据中的稀疏性问题,从而改善结果。
从图中的比较中我们可以看到,KPCA得到的特征向量的方差(特征值)比PCA高。因为对于点在特征向量(新坐标)上的投影的最大差异,KPCA是一个圆,PCA是一条直线,所以KPCA的方差大于PCA。那么,这是否意味着KPCA的主成分要高于PCA?