Questions tagged «bias-correction»

2
加权方差的偏差校正
对于未加权方差 存在的偏置校正的样本方差,当平均是从相同的数据估计: Var(X):=1Var(X):=1n∑i(xi−μ)2Var(X):=1n∑i(xi−μ)2\text{Var}(X):=\frac{1}{n}\sum_i(x_i - \mu)^2Var(X):=1n−1∑i(xi−E[X])2Var(X):=1n−1∑i(xi−E[X])2\text{Var}(X):=\frac{1}{n-1}\sum_i(x_i - E[X])^2 我正在研究加权均值和方差,并想知道加权方差的适当偏差校正是什么。使用: mean(X):=1∑iωi∑iωiximean(X):=1∑iωi∑iωixi\text{mean}(X):=\frac{1}{\sum_i \omega_i}\sum_i \omega_i x_i 我正在使用的“天真”,未经校正的方差是: Var(X):=1∑iωi∑iωi(xi−mean(X))2Var(X):=1∑iωi∑iωi(xi−mean(X))2\text{Var}(X):=\frac{1}{\sum_i \omega_i}\sum_i\omega_i(x_i - \text{mean}(X))^2 所以我想知道纠正偏见的正确方法是 A) Var(X):=1∑iωi−1∑iωi(xi−mean(X))2Var(X):=1∑iωi−1∑iωi(xi−mean(X))2\text{Var}(X):=\frac{1}{\sum_i \omega_i - 1}\sum_i\omega_i(x_i - \text{mean}(X))^2 或B) Var(X):=nn−11∑iωi∑iωi(xi−mean(X))2Var(X):=nn−11∑iωi∑iωi(xi−mean(X))2\text{Var}(X):=\frac{n}{n-1}\frac{1}{\sum_i \omega_i}\sum_i\omega_i(x_i - \text{mean}(X))^2 或C) Var(X):=∑iωi(∑iωi)2−∑iω2i∑iωi(xi−mean(X))2Var(X):=∑iωi(∑iωi)2−∑iωi2∑iωi(xi−mean(X))2\text{Var}(X):=\frac{\sum_i \omega_i}{(\sum_i \omega_i)^2-\sum_i \omega_i^ 2}\sum_i\omega_i(x_i - \text{mean}(X))^2 A)当权重较小时对我来说没有意义。归一化值可以是0甚至是负数。但是B)(是观察次数)-这是正确的方法吗?您是否有参考资料可以证明这一点?我相信“更新均值和方差估计:一种改进的方法”,DHD West,1979年使用了这种方法。第三,C)是我对这个问题的答案的解释:https : //mathoverflow.net/questions/22203/unbiased-estimate-of-the-variance-of-an-unnormalized-weighted-meannnn 对于C),我刚刚意识到分母看起来很像。这里有一些一般的联系吗?我认为这并不完全一致;显然我们正在尝试计算方差...Var(Ω)Var(Ω)\text{Var}(\Omega) 他们三个似乎都“生存”设置所有的健全性检查。那么我应该在哪个前提下使用哪个呢?“更新:” whuber建议也使用和所有其余的进行完整性检查。这似乎排除了A和B。ωi=1ωi=1\omega_i=1ω1=ω2=.5ω1=ω2=.5\omega_1=\omega_2=.5ωi=ϵωi=ϵ\omega_i=\epsilon

1
什么是偏差校正?[关闭]
已关闭。这个问题需要细节或说明。它当前不接受答案。 想改善这个问题吗?添加细节并通过编辑此帖子来澄清问题。 4年前关闭。 我已经看到许多地方都有输入/输出数据集,它们首先创建线性回归线,更正了偏差,然后仅将该数据用于他们的模型。我没有得到这个偏差校正是什么?
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.