为什么对套索识别的变量子集使用套索估计而不是OLS估计?
对于套索回归假设最佳解决方案(例如最小测试误差)选择了k个特征,这样\ hat {\ beta} ^ {lasso} = \ left(\ hat {\ beta} _1 ^ {lasso},\ hat {\ beta} _2 ^ {lasso},...,\ hat {\ beta} _k ^ {lasso},0,... 0 \ right)。L(β)=(Xβ−y)′(Xβ−y)+λ∥β∥1,L(β)=(Xβ−y)′(Xβ−y)+λ‖β‖1,L(\beta)=(X\beta-y)'(X\beta-y)+\lambda\|\beta\|_1,kkkβ^lasso=(β^lasso1,β^lasso2,...,β^lassok,0,...0)β^lasso=(β^1lasso,β^2lasso,...,β^klasso,0,...0)\hat{\beta}^{lasso}=\left(\hat{\beta}_1^{lasso},\hat{\beta}_2^{lasso},...,\hat{\beta}_k^{lasso},0,...0\right) 我们知道(β^lasso1,β^lasso2,...,β^lassok)(β^1lasso,β^2lasso,...,β^klasso)\left(\hat{\beta}_1^{lasso},\hat{\beta}_2^{lasso},...,\hat{\beta}_k^{lasso}\right)是一个\ left(\ beta_1,\ beta_2,...,\ beta_k \ right)的估计值有偏差(β1,β2,...,βk)(β1,β2,...,βk)\left(\beta_1,\beta_2,...,\beta_k\right),所以为什么我们仍将β^lassoβ^lasso\hat{\beta}^{lasso}作为最终解决方案,而不是更“合理的” β^new=(β^new1:k,0,...,0)β^new=(β^1:knew,0,...,0)\hat{\beta}^{new}=\left(\hat{\beta}_{1:k}^{new},0,...,0\right),其中β^new1:kβ^1:knew\hat{\beta}_{1:k}^{new}是部分模型Lnew(β1:k)=(X1:kβ−y)′(X1:kβ−y)Lnew(β1:k)=(X1:kβ−y)′(X1:kβ−y)L^{new}(\beta_{1:k})=(X_{1:k}\beta-y)'(X_{1:k}\beta-y)。(X1:kX1:kX_{1:k}表示与k个所选要素相对应的X列)。XXXkkk 简而言之,为什么我们同时将Lasso用于特征选择和参数估计,而不是仅用于变量选择(并将选定特征的估计留给OLS)? (此外,“套索最多可以选择nnn特征” 是什么意思?nnn是样本大小。)