这个问题在我心中困扰了一个多月。2015年2月的《Amstat新闻》收录了伯克利教授Mark van der Laan 的一篇文章,该文章谴责人们使用不精确的模型。他指出,通过使用模型,统计才是一门艺术而不是一门科学。根据他的说法,人们总是可以使用“精确模型”,而我们这样做的失败会导致“缺乏严格……我担心我们在数据科学中的代表地位将被边缘化”。 我同意我们有被边缘化的危险,但是威胁通常来自那些声称(听起来很像范德兰教授的人)他们没有使用某种近似方法,但实际上他们的方法却少得多的人严格的数据模型比经过仔细应用的统计模型还要严格-甚至是错误的统计模型。 我认为可以说范德兰教授对那些重复Box经常使用的话的人很鄙视:“所有模型都是错误的,但有些模型是有用的。” 基本上,正如我读到的那样,他说所有模型都是错误的,并且都是无用的。现在,我该拒绝伯克利大学教授的观点吗?另一方面,他是谁如此轻描淡写地拒绝了我们领域中真正的巨头之一的观点? van der Laan博士在详细阐述时指出:“声明所有模型都是错误的,完全是胡说八道……例如,没有任何假设的统计模型始终是正确的。” 他继续说:“但是通常,我们可以做得更好:我们可能知道数据是独立的相同实验的结果。” 除了非常狭窄的随机采样或受控实验设置外,我看不出有人会知道这一点。作者指出他在有针对性的最大似然学习和有针对性的基于最小损失的学习中的工作,这些工作“将最先进的技术集成到了机器学习/数据自适应估计中,所有因果推理,审查数据,效率和经验方面的令人难以置信的进步过程理论,同时仍然提供正式的统计推断。”ññn 我也同意一些说法。他说,我们需要认真对待我们的工作,我们作为统计学家的角色以及我们的科学合作者。听见!当人们例行使用逻辑回归模型或其他任何方法而没有仔细考虑是否足以回答科学问题或是否适合数据时,这无疑是个坏消息。我确实在该论坛上发布的问题中看到了很多此类滥用行为。但是我也看到不精确模型(甚至参数模型)的有效和有价值的使用。与他所说的相反,我很少被“另一种逻辑回归模型闷死”。我猜这就是我的天真。 所以这是我的问题: 使用完全不做任何假设的模型,可以做出哪些有用的统计推断? 是否存在使用目标最大可能性使用重要的真实数据的案例研究?这些方法是否被广泛使用和接受? 所有不精确的模型真的没有用吗? 除了琐碎的情况以外,是否可能知道您拥有确切的模型? 如果这太基于观点,因此太离题了,该在哪里讨论?因为范德兰博士的文章确实需要进行一些讨论。