Questions tagged «residual-networks»

5
如何在机器学习中处理分层/嵌套数据
我将用一个例子来解释我的问题。假设您要根据以下属性预测个人的收入:{年龄,性别,国家/地区,城市}。你有一个像这样的训练数据集 train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", "M","F","M","F", "F","F","F","M")), Income=c(31,42,71,65, 50,51,101,38, 47,50,55,23)) train CountryID RegionID CityID Age Gender Income 1 1 1 1 23 M 31 2 1 1 1 48 F 42 3 1 1 2 62 M 71 4 …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
在深度学习中的深度残差网络中,残差学习块到底是什么?
我正在阅读论文《深度残差学习以进行图像识别》,但我很难100%地确定残差块在计算上的含义。阅读他们的论文,他们有图2: 它说明了残余块应该是什么。残差块的计算是否与以下内容完全相同: y=σ(W2σ(W1x+b1)+b2+x)y=σ(W2σ(W1x+b1)+b2+x) \mathbf{y} = \sigma( W_2 \sigma( W_1 \mathbf{x} + b_1 ) + b_2 + \mathbf{x} ) 或者是别的什么? 换句话说,也许是试图与论文的符号相匹配的是: F(x)+x=[W2σ(W1x+b1)+b2]+xF(x)+x=[W2σ(W1x+b1)+b2]+x \mathcal F(x) + x = \left[ W_2 \sigma( W_1 \mathbf{x} + b_1 ) + b_2 \right] + \mathbf{x} 真的吗? yy\mathbf{y} σ(F(x)+x)=σ([W2σ(W1x+b1)+b2]+x)σ(F(x)+x)=σ([W2σ(W1x+b1)+b2]+x) \sigma( \mathcal F(x) + x ) = \sigma( …

2
残留网络是否与梯度提升相关?
最近,我们看到了残差神经网络的出现,其中,每个层都由一个计算模块和一个快捷连接组成,该连接保留了该层的输入,例如第i层的输出,表现为: 该网络允许提取残差特征并允许更深的深度,同时对消失的梯度问题更鲁棒,从而实现了最先进的性能。cicic_iyi+1=ci+yiyi+1=ci+yi y_{i+1} = c_i + y_i 深入研究了梯度提升,这是机器学习领域中一种非常强大的集成技术,它似乎也对损失的残差执行了一种梯度优化形式,很难不看到某种形式的相似性。 我知道它们相似但不相同 -我注意到的一个主要区别是,梯度增强对加法项进行了优化,而残差网络优化了整个网络。 我没有看到He等人在他们的原始论文中注意到这是他们动机的一部分。因此,我想知道您对此主题有何见解,并要求您共享自己拥有的有趣资源。 谢谢。
By using our site, you acknowledge that you have read and understand our Cookie Policy and Privacy Policy.
Licensed under cc by-sa 3.0 with attribution required.