5
检测时间序列的变化(R示例)
我想检测通常具有相同形状的时间序列数据的变化。到目前为止,我已经使用changepointR和cpt.mean(), cpt.var()and cpt.meanvar()函数的软件包。cpt.mean()当数据通常保持在一个级别时,使用PELT方法的效果很好。但是,我也想检测下降期间的变化。我要检测的一个变化示例是黑色曲线突然下降而实际上应遵循示例性红色虚线的部分。我已经尝试过cpt.var()函数,但是无法获得良好的结果。您是否有任何建议(不必使用R)? 这是具有更改的数据(作为R对象): dat.change <- c(12.013995263488, 11.8460207231808, 11.2845153487846, 11.7884417180764, 11.6865425802022, 11.4703118125303, 11.4677576899063, 11.0227199625084, 11.274775836817, 11.03073498338, 10.7771805591742, 10.7383206158923, 10.5847230134625, 10.2479315651441, 10.4196381241735, 10.467607842288, 10.3682422713283, 9.7834431752935, 9.76649842404295, 9.78257968297228, 9.87817694914062, 9.3449034905713, 9.56400153361727, 9.78120084558148, 9.3445162813738, 9.36767436354887, 9.12070987223648, 9.21909859069157, 8.85136359917466, 8.8814423003979, 8.61830163359642, 8.44796977628488, 8.06957847272046, 8.37999165387824, 7.98213210294954, 8.21977468333673, 7.683960439316, 7.73213584532496, 7.98956476021092, 7.83036046746187, 7.64496198988985, 4.49693528397253, 6.3459274845112, 5.86993447552116, …