一组数字的最小公倍数(LCM)A
是最小整数b
,使得b/a
对于所有的整数的整数a
在A
。此定义可以扩展为有理数!
任务
找到最小的正有理数, b
使得它b/a
是输入中所有有理数的整数。 a
规则
- 禁止出现标准漏洞。
- 您可以在输入中分别使用分子和分母,但不能使用双精度数,浮点数等。
- 输入可能没有完全减少。
- 您可以将分母为的整数输入作为有理数
1
。 - 允许将有理数提供给LCM / GCD内置文件的提交是允许的,但不竞争。
测试用例
In: 3
Out: 3
In: 1/17
Out: 1/17
In: 1/2, 3/4
Out: 3/2
In: 1/3, 2/8
Out: 1
In: 1/4, 3
Out: 3
In: 2/5, 3
Out: 6
In: 1/2, 3/4, 5/6, 7/8
Out: 105/2
这是代码高尔夫球,因此使用最少字节的提交会获胜!
LCM[numerators]/GCD[denominators]
当输入包含未归约的有理数时,计算可能无法正常工作。例如1/3, 2/8
。