最近,我一直在玩一个叫做Alcazar的游戏。这是一款棋盘益智游戏,您的目标是从一扇门进入,穿过所有正方形,然后从另一扇门退出。唯一的规则是:
- 进入一次,离开一次;
- 穿过所有正方形;
- 不要多次穿过广场
下图显示了一个Alcazar板的示例,其右侧显示了已解决的难题(当然这是一个简单的难题):
您可以在http://www.theincrediblecompany.com/try-alcazar上找到更多拼图,并在PlayStore下载该游戏(PS:不是广告)。
我的问题是除了一个关卡之外,我几乎完成了游戏。我根本找不到解决方法。因此,我提出的挑战是:创建一个可以解决任何正常的1可解决的2城堡等级的算法。
当然,我不是要任何人来构建图像解释器来读取图像并解决难题(或者是吗?)。因此,我使用方框图字符重新绘制了上述难题。这个难题及其解决方案将是这样的:
╔═══════╗ ╔═══════╗
║▒ ▒ ▒ ▒║ ║┌─┐ ┌─┐║
║ ║ ║ ║│ │ │║│║
╣▒ ▒ ▒║▒╠ ╣│ └─┘║└╠
║ ══╦═╩═╣ ║│══╦═╩═╣
║▒ ▒║▒ ▒║ ║└─┐║┌─┐║
║ ║ ║ ==> ║ │║│ │║
╣▒ ▒║▒ ▒║ ╣┐ │║│ │║
║ ║ ║ ║ ║│║│║│ │║
╣▒║▒ ▒ ▒║ ╣│║└─┘ │║
║ ║ ║ ║│║ │║
║▒ ▒ ▒ ▒║ ║└─────┘║
╚═══════╝ ╚═══════╝
在上面的面板中,▒
是要填充的单元格。
可以观察到细胞之间存在垂直和水平间隙。这是因为我必须在单元之间插入一个空格以添加墙。这意味着唯一重要的单元格是每个单元格的上方,下方,左侧和右侧。可以删除对角线而不会丢失信息。例如,在下面的面板中,两者都代表着相同的难题:
╔════╩╗ ═ ═ ╩
║▒ ▒ ▒║ ║▒ ▒ ▒║
║ ═══ ║ ═
║▒ ▒ ▒║ == ║▒ ▒ ▒║
║ ║
║▒ ▒ ▒║ ║▒ ▒ ▒║
╚╦════╝ ╦═ ══
这对于解决方案也是有效的。也就是说,不需要连接单元:
╔════╩╗ ╔════╩╗ ╔════╩╗
║▒ ▒ ▒║ ║┌───┘║ ║┌ ─ ┘║
║ ═══ ║ ║│═══ ║ ║ ═══ ║
║▒ ▒ ▒║ == ║└───┐║ => ║└ ─ ┐║
║ ║ ║ │║ ║ ║
║▒ ▒ ▒║ ║┌───┘║ ║┌ ─ ┘║
╚╦════╝ ╚╦════╝ ╚╦════╝
在上面的示例中,两种解决方案的含义相同。
是的,测试用例。他们来了:
难题1
╔════╩╗ ╔════╩╗
║▒ ▒ ▒║ ║┌ ─ ┘║
║ ═══ ║ ║ ═══ ║
║▒ ▒ ▒║ => ║└ ─ ┐║
║ ║ ║ ║
║▒ ▒ ▒║ ║┌ ─ ┘║
╚╦════╝ ╚╦════╝
拼图2
╔═════╗ ╔═════╗
║▒ ▒ ▒║ ║┌ ─ ┐║
║ ║ ║ ║ ║ ║
╣▒ ▒║▒║ ╣└ ┐║│║
║ ║ ║ ║ => ║ ║ ║ ║
╣▒║▒ ▒╠ ╣┐║│ │╠
║ ║ ║ ║ ║ ║
║▒ ▒ ▒║ ║└ ┘ │║
╚════╦╝ ╚════╦╝
拼图3
╔════╩══╗ ╔════╩══╗
║▒ ▒ ▒ ▒║ ║┌ ┐ └ ┐║
║ ║ ║ ║ ║ ║ ║ ║
╣▒║▒ ▒║▒╠ ╣┘║└ ┐║│╠
║ ╚══ ║ ║ ║ ╚══ ║ ║
║▒ ▒ ▒ ▒╠ => ║┌ ─ ┘ │╠
║ ═══ ║ ║ ═══ ║
║▒ ▒ ▒ ▒║ ║│ ┌ ┐ │║
║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒║ ║└ ┘║└ ┘║
╚═══╩═══╝ ╚═══╩═══╝
难题4
╔═══════╗ ╔═══════╗
║▒ ▒ ▒ ▒║ ║┌ ┐ ┌ ┐║
║ ║ ║ ║ ║ ║
╣▒ ▒ ▒║▒╠ ╣│ └ ┘║└╠
║ ══╦═╩═╣ ║ ══╦═╩═╣
║▒ ▒║▒ ▒║ ║└ ┐║┌ ┐║
║ ║ ║ => ║ ║ ║
╣▒ ▒║▒ ▒║ ╣┐ │║│ │║
║ ║ ║ ║ ║ ║ ║ ║
╣▒║▒ ▒ ▒║ ╣│║└ ┘ │║
║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒║ ║└ ─ ─ ┘║
╚═══════╝ ╚═══════╝
拼图5
╔══╩══════╗ ╔══╩══════╗
║▒ ▒ ▒ ▒ ▒║ ║┌ ─ ┐ ┌ ┐║
║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒ ▒╠ ║└ ┐║└ ┘ │╠
║ ╠════ ║ ║ ╠════ ║
║▒ ▒║▒ ▒ ▒║ => ║┌ ┘║┌ ─ ┘║
║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒ ▒╠ ║└ ┐║└ ─ ─╠
║ ╠═════╣ ║ ╠═════╣
║▒ ▒║▒ ▒ ▒║ ║┌ ┘║┌ ─ ┐║
║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒║ ║└ ─ ┘ ┌ ┘║
╚══╦═══╦══╝ ╚══╦═══╦══╝
拼图6
╔═══════════╗ ╔═══════════╗
║▒ ▒ ▒ ▒ ▒ ▒║ ║┌ ┐ ┌ ┐ ┌ ┐║
║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║│ └ ┘ └ ┘ │║
║ ═══ ║ ║ ═══ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║└ ┐ ┌ ─ ─ ┘║
║ ═══ ║ ║ ═══ ║
╣▒ ▒ ▒ ▒ ▒ ▒╠ => ╣┐ │ │ ┌ ┐ ┌╠
║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║│ │ │ │ │ │║
║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒║▒ ▒║▒ ▒║ ║│ │║│ │║│ │║
║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒║ ║└ ┘ └ ┘ └ ┘║
╚═══════════╝ ╚═══════════╝
拼图7
╔════╩════════╦╩╗ ╔════╩════════╦╩╗
║▒ ▒ ▒ ▒ ▒ ▒ ▒║▒║ ║┌ ─ ─ ─ ─ ─ ┐║│║
║ ║ ║ ║ ║ ║ ║ ║ ║ ║
║▒║▒ ▒ ▒ ▒║▒ ▒ ▒║ ║│║┌ ─ ─ ┐║┌ ┘ │║
║ ║ ║ ═══ ║ ║ ║ ║ ║ ═══ ║ ║
║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒╠ ║│ │║┌ ─ ┘ └ ┐ │╠
║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║ ║│ │ └ ┐ ┌ ┐ └ ┘║
║ ║ ║ ══╣ ║ ║ ║ ══╣
║▒ ▒ ▒║▒║▒ ▒ ▒ ▒║ ║│ └ ┐║│║│ └ ─ ┐║
║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║ ║│ ┌ ┘ │ └ ┐ ┌ ┘║
║ ║ ══╣ => ║ ║ ══╣
║▒ ▒ ▒ ▒ ▒ ▒║▒ ▒║ ║└ ┘ ┌ ┘ ┌ ┘║└ ┐║
╠══ ║ ╚══ ║ ╠══ ║ ╚══ ║
║▒ ▒ ▒ ▒ ▒║▒ ▒ ▒║ ║┌ ┐ └ ┐ │║┌ ─ ┘║
║ ║ ║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒║▒║▒ ▒ ▒ ▒║ ║│ └ ┐║│║│ └ ─ ┐║
║ ║ ║ ║ ╔══ ║ ║ ║ ║ ║ ╔══ ║
║▒║▒ ▒ ▒ ▒║▒ ▒ ▒║ ║│║┌ ┘ │ │║┌ ┐ │║
║ ║ ║ ║ ║ ║ ║ ║ ║ ║
║▒ ▒ ▒ ▒║▒ ▒ ▒ ▒║ ║│ └ ─ ┘║└ ┘ │ │║
║ ╚══ ║ ║ ╚══ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║ ║└ ─ ─ ─ ─ ─ ┘ │║
╚════╦═╦═╦═════╦╝ ╚════╦═╦═╦═════╦╝
难题8(对不起,我真的没有解决办法)
╔══╩╦══╩═══╩═╩═╩═══╩╗
║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║
║ ║ ║
╣▒ ▒║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║
║ ╚══ ╔══ ╔═══╣
╣▒ ▒ ▒ ▒║▒ ▒ ▒ ▒║▒ ▒╠
║ ║ ╔══ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒║▒ ▒ ▒ ▒╠
║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒╠
║ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒║▒ ▒ ▒ ▒╠
║ ╔═══╗ ╚══ ║
╣▒ ▒║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒║
║ ║ ║ ║
╣▒ ▒║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒╠
║ ══╝ ║ ╔══ ║
║▒ ▒ ▒ ▒║▒ ▒ ▒ ▒║▒ ▒║
║ ══╗ ╚══ ╔══ ║ ║
╣▒ ▒ ▒║▒ ▒ ▒║▒ ▒ ▒ ▒╠
║ ║ ║ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║▒ ▒║
║ ═══ ══╗ ║ ║
╣▒ ▒ ▒ ▒ ▒ ▒║▒ ▒ ▒ ▒╠
╠══ ║ ║ ╔══ ║
║▒ ▒║▒ ▒ ▒ ▒ ▒ ▒║▒ ▒╠
║ ╚══ ║ ║ ║ ║
╣▒ ▒ ▒ ▒║▒ ▒║▒ ▒ ▒ ▒╠
║ ║ ║ ║
║▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒ ▒║
╚══╦═══╦═══╦═╦═╦═╦═╦╝
输入值
只要遵循以下规则,您的代码输入就可以具有任何表示形式:
它必须是图形输入。因此,例如,无法读取坐标列表。
水平墙,垂直墙和门必须是不同的,并且必须由可见字符组成(不能有空白字符)。
该
▒
可以用空格代替。我只是用一个不同的角色来突出显示它们。
输出量
只要遵循以下规则,输出也可以具有任何表示形式:
它必须是图形输出。也就是说,可以通过查看路径来查看路径。
第一条规则意味着路径字符不同。也就是说,至少要有6个路径字符;水平,垂直和转角。
为了使答案有效,输出必须与输入(显然)在同一块板上,并且所有单元格(在我的表示中为
▒
)都已填充。填充单元之间的间隙是可选的。
计分
这是code-golf,因此以字节为单位的最短代码获胜。
1有些Alcazar级别具有可选的单元格和隧道。这些将不被考虑。
2有些Alcazar板是不可能的。