在用数字涂鸦时,我发现可以从数字列表中生成一个有趣的排列。如果您重复相同的排列足够多次,您将始终回到原始数组。让我们使用以下列表:
[1, 2, 3, 4, 5]
举个例子
反转数组。现在我们的数组是
[5, 4, 3, 2, 1]
重新排序(交换)每对。我们的列表有2对:
[5, 4]
和[3, 2]
。不幸的是,我们不能将它们组合1
为一对,所以我们将其留给自己。交换每对后,新数组为:[4, 5, 2, 3, 1]
重复步骤1和2,直到返回到原始数组。以下是以下4个步骤:
Step 2: Start: [4, 5, 2, 3, 1] Reversed: [1, 3, 2, 5, 4] Pairs Swapped: [3, 1, 5, 2, 4] Step 3: Start: [3, 1, 5, 2, 4] Reversed: [4, 2, 5, 1, 3] Pairs Swapped: [2, 4, 1, 5, 3] Step 4: Start: [2, 4, 1, 5, 3] Reversed: [3, 5, 1, 4, 2] Pairs Swapped: [5, 3, 4, 1, 2] Step 5: Start: [5, 3, 4, 1, 2] Reversed: [2, 1, 4, 3, 5] Pairs Swapped: [1, 2, 3, 4, 5] # No more steps needed because we are back to the original array
如果列表的长度n为奇数,则将总是恰好需要n步才能返回到原始数组。如果n为偶数,则总是需要2个步骤才能返回到原始数组,除非 n为2,否则将需要1个步骤(因为反转和交换是同一回事)。
今天的任务(您应该选择接受)是将这组步骤可视化以显示任意长度的列表。您必须编写一个程序或函数,该程序或函数将单个正整数n作为输入,并对list进行这组步骤[1, n]
。您必须沿途输出每个中间步骤,这意味着要打印每个步骤,还是将它们全部作为步骤列表返回。只要很清楚您正在生成每个步骤,我对输出格式就不会很挑剔。这意味着(例如)以下任何一项:
将每个步骤作为列表输出到STDOUT
返回列表列表
返回每个步骤的字符串表示形式列表
返回/输出矩阵
是可以接受的。
您还必须输出原始数组,无论是在数组末尾还是开头都取决于您。(从技术上讲,两者都是正确的)
您将需要处理2的边缘情况,而不是2,而是1步,因此请确保您的解决方案使用2的输入(并且1是另一种可能的边缘情况)。
像往常一样,这是代码错误,因此存在标准漏洞,并尝试使您的解决方案比您选择的语言短于其他任何语言(或者,如果您感到不适,甚至尝试击败通常比您短的另一种语言)挑战)。
测试IO
1:
[1]
2:
[1, 2]
3:
[2, 3, 1]
[3, 1, 2]
[1, 2, 3]
4:
[3, 4, 1, 2]
[1, 2, 3, 4]
5:
[4, 5, 2, 3, 1]
[3, 1, 5, 2, 4]
[2, 4, 1, 5, 3]
[5, 3, 4, 1, 2]
[1, 2, 3, 4, 5]
7:
[6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 6]
[4, 6, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 7, 5]
[7, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7]
9:
[8, 9, 6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 9, 6, 8]
[6, 8, 4, 9, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 9, 2, 8, 4, 6]
[4, 6, 2, 8, 1, 9, 3, 7, 5]
[7, 5, 9, 3, 8, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 8, 5, 9, 7]
[9, 7, 8, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
从好的方面来说,这是一个巨大的测试案例:
27:
[26, 27, 24, 25, 22, 23, 20, 21, 18, 19, 16, 17, 14, 15, 12, 13, 10, 11, 8, 9, 6, 7, 4, 5, 2, 3, 1]
[3, 1, 5, 2, 7, 4, 9, 6, 11, 8, 13, 10, 15, 12, 17, 14, 19, 16, 21, 18, 23, 20, 25, 22, 27, 24, 26]
[24, 26, 22, 27, 20, 25, 18, 23, 16, 21, 14, 19, 12, 17, 10, 15, 8, 13, 6, 11, 4, 9, 2, 7, 1, 5, 3]
[5, 3, 7, 1, 9, 2, 11, 4, 13, 6, 15, 8, 17, 10, 19, 12, 21, 14, 23, 16, 25, 18, 27, 20, 26, 22, 24]
[22, 24, 20, 26, 18, 27, 16, 25, 14, 23, 12, 21, 10, 19, 8, 17, 6, 15, 4, 13, 2, 11, 1, 9, 3, 7, 5]
[7, 5, 9, 3, 11, 1, 13, 2, 15, 4, 17, 6, 19, 8, 21, 10, 23, 12, 25, 14, 27, 16, 26, 18, 24, 20, 22]
[20, 22, 18, 24, 16, 26, 14, 27, 12, 25, 10, 23, 8, 21, 6, 19, 4, 17, 2, 15, 1, 13, 3, 11, 5, 9, 7]
[9, 7, 11, 5, 13, 3, 15, 1, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 26, 14, 24, 16, 22, 18, 20]
[18, 20, 16, 22, 14, 24, 12, 26, 10, 27, 8, 25, 6, 23, 4, 21, 2, 19, 1, 17, 3, 15, 5, 13, 7, 11, 9]
[11, 9, 13, 7, 15, 5, 17, 3, 19, 1, 21, 2, 23, 4, 25, 6, 27, 8, 26, 10, 24, 12, 22, 14, 20, 16, 18]
[16, 18, 14, 20, 12, 22, 10, 24, 8, 26, 6, 27, 4, 25, 2, 23, 1, 21, 3, 19, 5, 17, 7, 15, 9, 13, 11]
[13, 11, 15, 9, 17, 7, 19, 5, 21, 3, 23, 1, 25, 2, 27, 4, 26, 6, 24, 8, 22, 10, 20, 12, 18, 14, 16]
[14, 16, 12, 18, 10, 20, 8, 22, 6, 24, 4, 26, 2, 27, 1, 25, 3, 23, 5, 21, 7, 19, 9, 17, 11, 15, 13]
[15, 13, 17, 11, 19, 9, 21, 7, 23, 5, 25, 3, 27, 1, 26, 2, 24, 4, 22, 6, 20, 8, 18, 10, 16, 12, 14]
[12, 14, 10, 16, 8, 18, 6, 20, 4, 22, 2, 24, 1, 26, 3, 27, 5, 25, 7, 23, 9, 21, 11, 19, 13, 17, 15]
[17, 15, 19, 13, 21, 11, 23, 9, 25, 7, 27, 5, 26, 3, 24, 1, 22, 2, 20, 4, 18, 6, 16, 8, 14, 10, 12]
[10, 12, 8, 14, 6, 16, 4, 18, 2, 20, 1, 22, 3, 24, 5, 26, 7, 27, 9, 25, 11, 23, 13, 21, 15, 19, 17]
[19, 17, 21, 15, 23, 13, 25, 11, 27, 9, 26, 7, 24, 5, 22, 3, 20, 1, 18, 2, 16, 4, 14, 6, 12, 8, 10]
[8, 10, 6, 12, 4, 14, 2, 16, 1, 18, 3, 20, 5, 22, 7, 24, 9, 26, 11, 27, 13, 25, 15, 23, 17, 21, 19]
[21, 19, 23, 17, 25, 15, 27, 13, 26, 11, 24, 9, 22, 7, 20, 5, 18, 3, 16, 1, 14, 2, 12, 4, 10, 6, 8]
[6, 8, 4, 10, 2, 12, 1, 14, 3, 16, 5, 18, 7, 20, 9, 22, 11, 24, 13, 26, 15, 27, 17, 25, 19, 23, 21]
[23, 21, 25, 19, 27, 17, 26, 15, 24, 13, 22, 11, 20, 9, 18, 7, 16, 5, 14, 3, 12, 1, 10, 2, 8, 4, 6]
[4, 6, 2, 8, 1, 10, 3, 12, 5, 14, 7, 16, 9, 18, 11, 20, 13, 22, 15, 24, 17, 26, 19, 27, 21, 25, 23]
[25, 23, 27, 21, 26, 19, 24, 17, 22, 15, 20, 13, 18, 11, 16, 9, 14, 7, 12, 5, 10, 3, 8, 1, 6, 2, 4]
[2, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 14, 11, 16, 13, 18, 15, 20, 17, 22, 19, 24, 21, 26, 23, 27, 25]
[27, 25, 26, 23, 24, 21, 22, 19, 20, 17, 18, 15, 16, 13, 14, 11, 12, 9, 10, 7, 8, 5, 6, 3, 4, 1, 2]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]
打高尔夫球吧!
1 2 3 4 5
,不是1 2 4 3 5
。
array[0]
直到开始的过程的开始和结束,该脚本的值都为1 n = 999
。从模式上看,似乎对于每个奇数n,第一个元素一直1, n-1, 3, n - 3, 5, n - 5, 7...
上升到n - 2, 3, n, 1
,它将始终走n步。我看不出任何模式都会随着n的增加而改变。
1, n, 2, n-2, 4, n-4, 6, n-6, 8, n-8, ...